
colibry

Institute of Flight System Dynamics

Technical University of Munich

colibry.fsd@ed.tum.de

January 26, 2023

Contents

1 Prologue 1

2 Getting Started 2
2.1 Installation . 2

2.1.1 Linear Solver Dependencies . 3
2.2 Configuration . 4
2.3 Run a First Demo . 4

3 Basic Concepts 8
3.1 Definition, Setup, and Solution of a Counter Optimization Problem in COLIBRY 8

4 Overview of the Implemented Counter Optimization Methods 12
4.1 Linear Optimal Control-based Analysis . 12
4.2 Bi-level Linear Optimal Control-based Analysis . 12
4.3 Nonlinear Optimal Control-based Analysis . 13
4.4 Single Shooting-based Analysis . 13
4.5 Learning-based Analysis . 13

5 The COLIBRY User Interface 14
5.1 Model Interfaces . 14

5.1.1 colibry.model.Linear . 14
5.1.2 colibry.model.Nonlinear . 15
5.1.3 colibry.model.Simulation . 16
5.1.4 colibry.model.Discrete . 16

5.2 Objective Interfaces . 17
5.2.1 colibry.objective.Cost . 17
5.2.2 colibry.objective.Reward . 18

6 Contributors 19

References 20

Institute of Flight System Dynamics, Technical University of Munich i

1 Prologue

Thorough testing and validation of dynamic systems are crucial to guarantee safe operation.
Consider for example the task of flight control law clearance, which ensures that all relevant
requirements to the closed-loop system are satisfied [1]. In practice, this assessment requires an
immense amount of testing, especially for modern, highly augmented aircraft for which the flight
control laws are central to safety and performance. Here, a mixture of sampling- and optimization-
based methods is typically used to test whether requirements are fulfilled throughout the entirety
of the flight envelope. The essential idea of optimization-based testing, as opposed to conven-
tional sampling-based testing, is to leverage the effectiveness of numerical optimization methods
to identify violations of the investigated criteria efficiently [2]. Optimization-based worst-case
analysis, referred to as counter optimization, aims at driving the system under test (SUT) as close
as possible to - or even beyond - the admissible limit performance. This analysis allows for the
efficient identification of design weak points or, more generally, regions of presumed worst-case
performance. Such information is extremely valuable for the design, verification, and validation
of complex systems, especially if obtained in early stages of the development process.

The Counter Optimization LiBraRY (COLIBRY) constitutes a collection of optimization-based testing
methods, intended for performing worst-case analyses of dynamic systems considering a combination
of time-varying inputs and parameters.

ò
If you intend to use this toolbox for scientific studies, please cite the following paper:

1 @article{colibryToolbox2023,
2 author = {D. Braun and F. Schwaiger and F. Holzapfel and J.

Diepolder and J.Z. Ben-Asher},
3 title = {COLIBRY - A Counter Optimization Library for MATLAB},
4 journal = {AIAA Scitech 2023 Forum},
5 year = {2023},
6 doi = {10.2514/6.2023-2584},
7 }

Institute of Flight System Dynamics, Technical University of Munich 1

2 Getting Started

If you are a newcomer and not really familiar with MATLAB, you should start here. Otherwise you
may skip ahead and directly learn the interface of COLIBRY by studying the provided demonstration
examples.

2.1 Installation

COLIBRY is primarily tested for MATLAB 2021a or newer versions.

The toolbox- and external software dependencies depend on the respective method:

Method Toolbox Dependencies

Linear Optimal
Control

IBM ILOG CPLEX (commercial) or Coin-OR CLP (open-source)

BiLevelLinear
Optimal Control

IBM ILOG CPLEX (commercial) or Coin-OR CLP (open-source)

Nonlinear Optimal
Control

Falcon.m

Single Shooting MATLAB “Global Optimization Toolbox”

Learning MATLAB “Reinforcement Learning Toolbox” and MATLAB “Deep Learning
Toolbox”

Moreover, in order to be able to use parallelization, the MATLAB “Parallel Computing Toolbox” is
required.

To install the release version of our toolbox, first retrieve the archive from our Downloads page. Then
unzip to a folder on your machine you have access to. And done! Go ahead to configuration.

Should you instead have access to our development version, which is a git repository, you may instead
add the toolbox as a submodule dependency to your project. If we assume you aggregate all your
submodules in a folder called External, you may do:

Institute of Flight System Dynamics, Technical University of Munich 2

https://www.mathworks.com/products/matlab.html
https://www.ibm.com/support/pages/downloading-ibm-ilog-cplex-optimization-studio-v1290
https://github.com/coin-or/Clp
https://www.ibm.com/support/pages/downloading-ibm-ilog-cplex-optimization-studio-v1290
https://github.com/coin-or/Clp
https://www.fsd.ed.tum.de/software/falcon-m/
https://de.mathworks.com/products/global-optimization.html
https://de.mathworks.com/products/reinforcement-learning.html
https://de.mathworks.com/products/deep-learning.html
https://de.mathworks.com/products/deep-learning.html
https://de.mathworks.com/products/parallel-computing.html
https://www.fsd.ed.tum.de/software/colibry/

Chapter 2 Counter Optimization LiBraRY (COLIBRY)

1 git submodule add <insert/url/to/colibry.git> External/colibry

�
You can also use console commands from within MATLAB. Prefix the command above
with an exclamation mark ! on the integrated shell:

1 >> !git submodule add ...

2.1.1 Linear Solver Dependencies

At the core of the linear- and the bi-level-linear-optimalcontrol-based method is the solution of large-
scale Linear Programs (LP). In version 1.00 two LP solvers are supported:

2.1.1.1 The open-source Coin-OR CLP solver.

This solver needs some libraries installed. See below for the prerequisites to install.

Prerequisites:

• on macOS, use homebrew (https://brew.sh) to install clp and coinutils

1 brew install clp coinutils

• on win64, install the official DLLs from https://bintray.com/coin-or/download/Clp into
$CLP_INSTALL_DIR and set the environment variable

• on linux, you need some apts: if you are just using the library

1 sudo apt-get install libgfortran4

if you also want to recompile the mex file

1 sudo apt-get install -y gfortran liblapack-dev libbz2-dev

COLIBRY will then automatically compile the clp mex file once the clp solver is called.

2.1.1.2 The commercial IBM ILOG CPLEX solver.

Follow the installation instructions at (https://www.ibm.com/docs/en/icos/12.9.0?topic=matlab-
getting-started-cplex). Note that the academic licence only covers academic research work!

Institute of Flight System Dynamics, Technical University of Munich 3

Chapter 2 Counter Optimization LiBraRY (COLIBRY)

2.2 Configuration

Unpacking the toolbox code does not immediately make it visible in MATLAB. To use COLIBRY in your
own code, adding code/ to the MATLAB path is sufficient. Be aware, however, that future versions of this
toolbox might add additional dependencies and more folders, so we suggest using our included project
file instead. Opening the project will add all required folders to your search path automatically:

1 openProject path/to/colibry/

If you are using MATLAB projects already, you can add COLIBRY as a Project Reference. To do so, open
your own project, click the + References button, and add COLIBRY’s project.

If you do not use projects, we encourage you to try them out. They help keeping software modules
together.

The toolbox is structured into the following folders:

• code/
• demo/
• resources/
• Colibry.prj

2.3 Run a First Demo

Test your installation of COLIBRY by running the demonstration example main.m in the subfolder
demo/01-linear-optimalcontrol.

This example considers the worst-case input analysis of a fixed-wing aircraft equipped with a flight
control system as well as servos for the primary control surfaces (elevator, aileron, and rudder). The
states describing the aircraft’s rigid body are the absolute velocity V , the angle-of-attack α, the angle-
of-sideslip β, as well as the Euler angles ϕ (roll), θ (pitch), and ψ (yaw) with the corresponding angular
rates p, q, and r.

The analysis considers the linearized closed-loop dynamics of the aircraft. The operating point, used
for the linearization of the nonlinear closed-loop system dynamics, represents a horizontal, wing level,
and steady-state flight condition. In the vicinity of the operating condition, the equations for the
longitudinal and lateral plane decouple, and are thus considered individually.

The example focuses on the lateral dynamics and investigates the maximum lateral load factor response
to a combined roll angle ϕc and lateral load factor ny,c command over 8 seconds. Constraints of the
physical actuation system are accounted for using state constraints. Specifically, the position and
velocity of the control surfaces aileron ζ and rudder ξ are bounded by box-bounds.

Institute of Flight System Dynamics, Technical University of Munich 4

https://www.mathworks.com/help/matlab/matlab_prog/create-projects.html

Chapter 2 Counter Optimization LiBraRY (COLIBRY)

Before considering the definition, set-up, and solution of this counter optimization problem in detail,
we investigate the output produced by running main.m.

1 mySolution =
2
3 Solution with properties:
4
5 OptimalCost: [1x1 colibry.linearoptimalcontrol.OptimalCost]
6 OptimalStateGridVector: [10x1 colibry.linearoptimalcontrol.

OptimalState]
7 OptimalControlGridVector: [2x1 colibry.linearoptimalcontrol.

OptimalControl]
8 OptimalOutputGridVector: [2x1 colibry.linearoptimalcontrol.

OptimalOutput]
9 SwitchingFunctionGridVector: [2x1 colibry.linearoptimalcontrol.

SwitchingFunction]
10 CostateGridVector: [10x1 colibry.linearoptimalcontrol.Costate]
11 TimeToSolve: 7.3103

All results of the analysis - including the maximal attainable load factor ny (mySolution.OptimalCost
.Value), the corresponding worst-case control inputs (mySolution.OptimalControlGridVector) as
well as the resulting state and output trajectories (mySolution.OptimalStateGridVector, mySolution
.OptimalOutputGridVector) - are contained in the colibry.Solution object mySolution.

The solution of the counter optimization problem can be visualized using the colibry.Visualizer
object. It is found that the maximum lateral load factor attainable within 8 seconds is 0.278.

Figure 2.1: Worst-Case Control Inputs

Institute of Flight System Dynamics, Technical University of Munich 5

Chapter 2 Counter Optimization LiBraRY (COLIBRY)

Figure 2.2: Worst-Case Outputs

Figure 2.3: Worst-Case States 1

Institute of Flight System Dynamics, Technical University of Munich 6

Chapter 2 Counter Optimization LiBraRY (COLIBRY)

Figure 2.4: Worst-Case States 2

Figure 2.5: Worst-Case States 3

Institute of Flight System Dynamics, Technical University of Munich 7

3 Basic Concepts

In the following the demonstration examplemain.m in the subfolderdemo/01-linear-optimalcontrol
is used to explain the definition, set-up, and solution of a counter optimization problem in COLIBRY.

3.1 Definition, Setup, and Solution of a Counter Optimization Problem in
COLIBRY

As a first step a colibry.linearoptimalcontrol.Problem instance is created.

1 myProblem = colibry.linearoptimalcontrol.Problem('Name', 'Maximum Lateral Load
Factor - Control Input Analysis')...

This particular subclass of the superclass colibry.Problem requires the definition of the following
problem components: - states - parameters (optionally) - controls - outputs - model - final time - cost -
options - method-specific solver arguments

Additionally, the problem instance allows for the specification of a Name.

In the script main.m the problem components are defined as follows:

1 %% Create problem instance
2 myProblem = colibry.linearoptimalcontrol.Problem('Name', 'Maximum Lateral Load

Factor - Control Input Analysis')...
3 .addState('beta', 'PlotName', 'β', 'PlotUnit', 'deg', 'PlotConv', @

rad2deg) ...
4 .addState('phi', 'PlotName', 'ϕ', 'PlotUnit', 'deg', 'PlotConv', @

rad2deg) ...
5 ... other rigid body and controller states
6 .addState('xi_pos', 'Bounds', deg2rad([-20, 20]), 'PlotName', 'ξ_{pos}'

, ...
7 'PlotUnit', 'deg', 'PlotConv', @rad2deg) ...
8 .addState('xi_vel', 'Bounds', deg2rad([-26, 26]), 'PlotName', 'ξ_{vel}'

, ...
9 'PlotUnit', 'deg/s', 'PlotConv', @rad2deg) ...

10 ... other (bounded) states for control surfaces
11 .addOutput('n_y', 'PlotName', 'n_y') ...

Institute of Flight System Dynamics, Technical University of Munich 8

Chapter 3 Counter Optimization LiBraRY (COLIBRY)

12 .addControl('n_y_c', 'Bounds', [-0.10, 0.10], 'PlotName', '$n_{y,c}$') ...
13 ... other controls
14 .setModel(myModel) ...
15 .setFinalTime(8) ...
16 .setObjective(myCost) ...
17 .setOption('StepSize', 0.005) ...
18 .setOption('DiscretizationMethod', 'BackwardEuler') ...
19 ... other options
20 .setSolverArgument("MaxTime", 10) ...
21 ... other solver arguments

Problem components such as the final time, step size, the discretization method, or other solver
options can be specified directly. The cost and model instances, however, constitute implementations
against predefined abstract class interfaces.

1 %% Create model instance
2 myModel = AircraftModel();
3 %% Create cost instance
4 myCost = colibry.objective.MayerCost("max")...
5 .addComponentAndWeight("n_y", 1);

The linear model of the aircraft is implemented in AircraftModel. This class constitutes a specific
implementation of the abstract superclass colibry.model.Linear, which governs the model interface
to linear systems in COLIBRY. The function provideLinearModel implements a routine that provides
the linearized model for a particular parameter vector.

The definition of the objective function is accomplished through the instantiation of an objective of
type colibry.objective.MayerCost, which is the standard class for Mayer-type objective functions in
COLIBRY. By default, the toolbox considers objectives as cost functions and thus minimizes the returned
objective value. Because in this example, however, the lateral load factor is to be maximized, "max" is
passed to the constructor. The objective is specified by adding components with corresponding weights
to the cost object. For these components, outputs with matching identifiers need to be specified in the
problem definition. COLIBRY will then consider the weighted sum of the specified outputs at the final
time point in the cost function of the optimal control problem. In our illustrative example, only a single
quantity, the lateral load factor ny, is under investigation. Hence, one component ("n_y") with unit
weight (1.0) is added to the object.

Having set up the problem, we can investigate the pole-zero and step characteristics of the linear
system. To this end we instantiate a a colibry.linearoptimalcontrol.Inspector object and call its
methods plotPoleZeroPlot() and plotStepFunction():

1 myInspector = colibry.linearoptimalcontrol.Inspector();
2 myInspector.plotPoleZeroPlot(myProblem);
3 myInspector.plotStepFunction(myProblem);

Institute of Flight System Dynamics, Technical University of Munich 9

Chapter 3 Counter Optimization LiBraRY (COLIBRY)

After having set up and inspected the problem, we start the counter optimization analysis by calling:

1 %% Solve problem and obtain solution
2 mySolution = solve(myProblem);

This triggers the solution of the counter optimization problem. In the case of the Linear Optimal
Control-based approach, the counter optimization problem is transcribed into a Linear Programming
problem and subsequently solved using numerical optimization.

All results are contained in the colibry.linearoptimalcontrol.Solution object mySolution
. For the linear optimal control-based analysis, the solution comprises the following com-
ponents: - OptimalCost - contains the maximum value of the cost function as well as first-
order sensitivity information - OptimalStateGridVector - optimum values of the state vari-
ables over time - OptimalControlGridVector - optimum values of the control variables
over time - OptimalOutputGridVector - optimum values of the output variables over time -
SwitchingFunctionGridVector - the values of the switching function over time - CostateGridVector
- the values of the costate variables over time - TimeToSolve - the required runtime of the counter
optimization analysis

Additional information, e.g., the raw solver output, can be accessed by callingreturnInternalSolution
():

1 debugSolution = mySolution.returnInternalSolution();

Note that the content and structure of the internal solution may change in future releases.

To facilitate the interpretation of the solution, each colibry.Problem implements a colibry.
Visualizer object that can be used for the visualization of the obtained solution.

1 %% Visualize solution
2 myVisualizer = mySolution.visualize();
3 myVisualizer.plotControls();
4 myVisualizer.plotStates();
5 myVisualizer.plotOutputs();
6 myVisualizer.plotSwitchingFunctions();
7 myVisualizer.plotSensitivities();

A pdf-report of the solution to the counter optimization problem can be obtained by means of the
colibry.ReportGenerator.

1 %% Generate pdf-report
2 mySolution.report();

At this point, you are able to define, set-up, and solve counter optimization problems using the Linear
Optimal Control-based approach. Because the modeling syntax used in COLIBRY is designed to be

Institute of Flight System Dynamics, Technical University of Munich 10

Chapter 3 Counter Optimization LiBraRY (COLIBRY)

homogeneous across different counter optimization methods, you should be able to quickly apply other
counter optimization methods yourself. This can be confirmed by checking out the other demonstration
examples located in the folder demo/.

Institute of Flight System Dynamics, Technical University of Munich 11

4 Overview of the Implemented Counter
Optimization Methods

This release of COLIBRY includes five counter optimization methods, referred to as library entries. Each
of the methods is briefly summarized in the following sections. More detailed information about the
implemented approaches is available in the literature.

4.1 Linear Optimal Control-based Analysis

An optimal control-based method that identifies worst-case control inputs to quasi-linear systems
[3]. Quasi-linear systems are understood here as linear models subject to additional state constraints.
These constraints can be used, for example, to model physical limitations such as actuator position
and rate bounds. Moreover, by means of post-optimal sensitivity analysis, the influence of parameters
on the worst-case value of the testing criterion can be computed efficiently [5]. For an application of
this method a linearization routine, capable of computing the linearized system, input, and output
matrix for particular values of the parameters, needs to be provided by the user. The solution obtained
from this type of analysis is globally optimal.

4.2 Bi-level Linear Optimal Control-based Analysis

By leveraging a two-layered optimization scheme, this method computes the worst-case combination
of control inputs and system parameters for quasi-linear systems [4]. On the one side, the lower level
in this scheme performs linear optimal control-based analyses for fixed values of the parameters. From
a user perspective, the same requirements for the application of this method as for the linear optimal
control-based analysis apply. On the other side, the upper level solves a (typically low-dimensional)
parameter search problem. Several optimization methods such as gradient-based or global schemes
can be chosen by the user for the upper level. Note that despite their efficiency and the ability to check
the optimality conditions for local solution candidates, gradient-based methods do not guarantee the
identification of globally optimal solutions for the parameter search. Similarly, global methods are to
be understood here in the sense that in practical applications these methods can increase the chance

Institute of Flight System Dynamics, Technical University of Munich 12

Chapter 4 Counter Optimization LiBraRY (COLIBRY)

of identifying a globally optimal solution. The same holds for the use of global optimization methods
in the single shooting-based analysis.

4.3 Nonlinear Optimal Control-based Analysis

This method implements an interface for the application of direct optimal control methods. In the cur-
rent version of COLIBRY this interface maps to FALCON.m [6] (https://www.fsd.lrg.tum.de/software/falcon-
m/). Using FALCON.m, the nonlinear optimal control problem is transcribed to a discretized version
that can be efficiently solved using sparse Nonlinear Programming (NLP) solvers. Under this
approach, the optimization of control inputs and parameters can be treated simultaneously. The
FALCON.m framework and its dependencies, such as additional NLP solvers, represent a (free) software
dependency outside COLIBRY. For the application of this method, the closed-loop system under
test needs to be implemented as a model understood by FALCON.m. In particular, that requires
implementing a procedure for the efficient computation of partial derivatives. Despite there being no
guarantee of finding a globally optimal solution, the necessary and sufficient conditions of optimality
can be checked for local solution candidates.

4.4 Single Shooting-based Analysis

This counter optimization method uses repeated simulation of the SUT to identify detrimental combi-
nations of time-varying control inputs and static parameters. Prerequisite for an application of this
method in practice is the implementation of an efficient simulation routine, which then is used within
an optimization routine. At the time of this publication, COLIBRY primarily uses the MATLAB Global
Optimization Toolbox to solve the underlying, typically nonlinear, black-box-type optimization problem.
Recalling the remark in the section about the Bi-level Linear Optimal Control-based analysis, the use
of global optimization schemes does not guarantee globally optimal solutions.

4.5 Learning-based Analysis

Utilizing RL techniques, this method trains a Double Deep Q-Network [8] agent to identify the worst-case
sequence of time-varying system inputs [9]. Because the training of the RL agent constitutes a repeated
interaction between the agent and the non-simplified SUT, this counter optimization approach is
particularly well suited for the analysis of highly complex systems. However, similar to the single
shooting-based approach, this library entry does not provide a guarantee for global optimality.

Institute of Flight System Dynamics, Technical University of Munich 13

5 The COLIBRY User Interface

5.1 Model Interfaces

The following paragraphs explain the abstract model interfaces used in COLIBRY.

5.1.1 colibry.model.Linear

This abstract class interface constitutes the model interface to linear systems.

In order to implement the interface to a linear system, create a new class that inherits from colibry
.model.Linear. Then, implement the abstract method provideLinearModel() by implementing a
routine that returns the linearized model A, B, C and its initial condition x_0, u_0, y_0 for incoming
parameters p.

The interface of provideLinearModel() is defined as follows:

1 provideLinearModel(self, A, B, C, x_0, u_0, y_0, p);
2 % Provide the linearized model 'A', 'B', 'C' and its initial condition 'x_0', '

u_0', 'y_0' for parameters 'p'.
3 %
4 % Note: The results should be stored in the handle objects 'A', 'B', 'C', 'x_0

', 'u_0', and 'y_0'.
5 %
6 % Arguments:
7 % A - (:, :) colibry.Scalar, linear system matrix.
8 % B - (:, :) colibry.Scalar, linear input matrix.
9 % C - (:, :) colibry.Scalar, linear output matrix.

10 % x_0 - (:, 1) colibry.Scalar, reference state vector.
11 % u_0 - (:, 1) colibry.Scalar, reference control vector.
12 % y_0 - (:, 1) colibry.Scalar, reference output vector.
13 % p - (:, 1) colibry.Scalar, parameters.

Note that all user interfaces in COLIBRY have the following argument structure: (self, outputs, inputs). In
case of provideLinearModel(), the outputs comprise the linear model (A, B, C) and its initial condition
(x_0, u_0, y_0), while the inputs comprise the parameters (p). All arguments are arrays of type colibry
.Scalar. colibry.Scalar objects are handle classes used for storing scalar data.

Institute of Flight System Dynamics, Technical University of Munich 14

Chapter 5 Counter Optimization LiBraRY (COLIBRY)

As demonstrated in the example demo/01-linear-optimalcontrol/AircraftModel.m, an implemen-
tation against provideLinearModel() must “fill” the outputs A, B, C, x_0, u_0, y_0 with data obtained
from computing the linear system for the incoming parameter values p.

5.1.2 colibry.model.Nonlinear

This abstract class interface constitutes the model interface to nonlinear systems and requires the
implementation of two abstract methods: getInitialCondition() and evaluateJacobian().

1 getInitialCondition(self, x0Bounds);
2 % Provide the initial condition for the states by specifying 'x0Bounds'.
3 %
4 % Note: The result should be stored in the handle object 'x0Bounds'.
5 %
6 % Arguments:
7 % x0Bounds - (:, 2) colibry.Scalar, lower and upper bounds of the states.
8
9 evaluateJacobian(self, xDot, y, jacXDot, jacY, x, u, p);

10 % Provide the state derivative 'xDot', the output 'y', and the gradients '
jacXDot' and 'jacY'.

11 %
12 % Note: The results should be stored in the handle objects 'xDot', 'y', '

jacXDot', and 'jacY'.
13 %
14 % Arguments:
15 % xDot - (:, 1) colibry.TimeSeries, state derivative.
16 % y - (:, 1) colibry.TimeSeries, output.
17 % jacXDot - (:, 1) colibry.TimeSeries, gradient of state derivative.
18 % jacY - (:, 1) colibry.TimeSeries, gradient of output derivative.
19 % x - (:, 1) colibry.TimeSeries, states.
20 % u - (:, 1) colibry.TimeSeries, controls.
21 % p - (:, 1) colibry.Scalar, parameters.

Similar to the linear model interface, the nonlinear interface requires users to implement routines that
“fill” the outputs of the respective method. Thus, getInitialCondition() requires the user to store
the lower and upper bounds of the states in the handle object x0Bounds. Analogously, the method
evaluateJacobian() requires the user to implement a routine that computes and stores the state
derivative, the output, and the gradients of the state derivative and the output in the handle objects
xDot, y, jacXDot, and jacY.

Exemplary implementations against the nonlinear model interface colibry.model.Nonlinear are
provided in demo/05-nonlinear-optimalcontrol/MRACModelFalcon.m and demo/05-nonlinear-
optimalcontrol/MRACModelManual.m.

Institute of Flight System Dynamics, Technical University of Munich 15

Chapter 5 Counter Optimization LiBraRY (COLIBRY)

5.1.3 colibry.model.Simulation

This abstract class interface for a simulation model requires the implementation of the abstract method
simulate().

1 simulate(self, x, y, u, p, tsim)
2 % Provide simulation results 'x' and 'y' for controls 'u' and parameters 'p'.
3 %
4 % Note: The results should be stored in the handle objects 'x' and 'y'.
5 %
6 % Arguments:
7 % x - (:, 1) colibry.TimeSeries, states.
8 % y - (:, 1) colibry.TimeSeries, outputs.
9 % u - (:, 1) colibry.TimeSeries, controls.

10 % p - (:, 1) colibry.Scalar, parameters.
11 % tsim - (:, 1) colibry.Scalar, final simulation time.

An example of an implementation against the model interface colibry.model.Simulation is provided
in demo/02-singleshooting/MRACModel.m.

5.1.4 colibry.model.Discrete

This abstract class interface requires the implementation of two abstract methods: init() and step()
.

1 init(self, xInit, out, p)
2 % Initialize the system for parameters 'p' and return the initial state 'xInit'
3 % as well as additional output information 'out' at the initial time.
4 %
5 % Note: The results should be stored in the handle objects 'xInit' and 'out'.
6 %
7 % Arguments:
8 % xInit - (:, 1) colibry.Scalar, vector of states after initialization.
9 % out - (:, :) colibry.Scalar, output information to be used in the

reward function.
10 % p - (:, 1) colibry.Scalar, vector of static parameters.
11
12 step(self, xNext, out, xPrev, a, dt)
13 % Simulate the system starting from state 'xPrev' for time 'dT' using actions '

a'
14 % as control inputs. Return the next state 'xNext' as well as additional output
15 % information 'out' containing information obtained throughout the performed

simulation.
16 %
17 % Note: The results should be stored in the handle objects 'xNext' and 'out'.

Institute of Flight System Dynamics, Technical University of Munich 16

Chapter 5 Counter Optimization LiBraRY (COLIBRY)

18 %
19 % Arguments:
20 % xNext - (:, :) colibry.Scalar, vector of states after step.
21 % out - (:, :) colibry.Scalar, output information to be used in the

reward function.
22 % xPrev - (:, 1) colibry.Scalar, vector of states prior to step.
23 % a - (:, 1) colibry.Scalar, actions to be used as control inputs.
24 % dt - (1, 1) colibry.Scalar, simulation time of step.

An example of an implementation against the model interface colibry.model.Discrete is provided
in demo/04-learning/MRACModel.m.

5.2 Objective Interfaces

The following paragraphs explain the abstract objective interfaces used in COLIBRY.

5.2.1 colibry.objective.Cost

colibry.objective.Cost constitutes an abstract class interface for user-implemented cost func-
tions.

In order to implement a custom cost function, create a new class that inherits from colibry.objective
.Cost. Then, implement the abstract method evaluate() by implementing a routine that computes
the value of the cost function c.

The interface of evaluate() is defined as follows:

1 evaluate(self, c, x, y, u, p)
2 % Compute and return the cost function value 'c'.
3 %
4 % Note: The result should be stored in the handle object 'c'.
5 %
6 % Arguments:
7 % c - (1, 1) colibry.Scalar, cost function value.
8 % x - (:, 1) colibry.TimeSeries, states.
9 % y - (:, 1) colibry.TimeSeries, outputs.

10 % u - (:, 1) colibry.TimeSeries, controls.
11 % p - (:, 1) colibry.Scalar, parameters.

An example of a custom cost function, implemented against the abstract interface colibry.objective
.Cost is provided in demo/02-singleshooting/MRACCost.m.

Institute of Flight System Dynamics, Technical University of Munich 17

Chapter 5 Counter Optimization LiBraRY (COLIBRY)

5.2.2 colibry.objective.Reward

This class constitutes an abstract interface for user-implemented reward functions.

An implementation of a custom reward function is analogue to that of a custom cost function. First,
create a new class that inherits from colibry.objective.Reward. Second, implement the abstract
method evaluate() by implementing a routine that computes the value of the reward function r.

The interface of evaluate() is defined as follows:

1 evaluate(self, r, out, iter, done)
2 % Given output information 'out', collected thorughout the preceeding

simulation steps,
3 % and information whether the episode is terminal 'done', this method computes

the value
4 % of the reward 'r'.
5 %
6 % Note: The result should be stored in the handle object 'r'.
7 %
8 % Arguments:
9 % r - (1, 1) colibry.Scalar, reward function value.

10 % out - (:, 1) colibry.TimeSeries, output information collected
11 % throughout the course of the episode.
12 % iter - (1, 1) integer, iteration index.
13 % done - (1, 1) logical, true if the episode is terminal.

An example of a custom reward function, implemented against the abstract interface colibry.
objective.Reward is provided in demo/04-learning/MRACReward.m.

Institute of Flight System Dynamics, Technical University of Munich 18

6 Contributors

Contributors to this project are:

• David Braun (Maintainer)
• Johannes Diepolder
• Florian Schwaiger
• Joseph Z. Ben-Asher
• Florian Holzapfel

Institute of Flight System Dynamics, Technical University of Munich 19

References

[1] C. Fielding, V. Andras, B. Samir, and S. Michiel, Advanced techniques for clearance of flight control
laws. Springer Berlin Heidelberg, 2002.

[2] V. Andras, H. Anders, and P. Guilhem, Optimization based clearance of flight control laws. Springer
Berlin Heidelberg, 2012.

[3] A. Herrmann and J. Ben Asher, “Flight control law clearance using optimal control theory,”
Journal of Aircraft, vol. 1, pp. 1–15, Oct. 2015, doi: 10.2514/1.C033517.

[4] J. Diepolder, J. Z. Ben-Asher, and F. Holzapfel, “Flight control law clearance using worst-case
inputs under parameter uncertainty,” Journal of Guidance, Control, and Dynamics, vol. 43, no.
10, pp. 1967–1974, 2020, doi: 10.2514/1.G005236.

[5] J. Diepolder, “Optimal control based clearance of flight control laws,” Dissertation, Technische
Universität München, München, 2021.

[6] M. Rieck et al., “FALCON.m user guide: Version 1.27.” Institute of Flight System Dynamics,
Technical University of Munich, 2022, [Online]. Available: http://www.falcon-m.com.

[7] V. Mnih et al., “Human-level control through deep reinforcement learning,” Nature, vol. 518, no.
7540, pp. 529–533, Feb. 2015, doi: 10.1038/nature14236.

[8] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double q-learning.”
arXiv, 2015, doi: 10.48550/ARXIV.1509.06461.

[9] D. Braun, R. Steffensen, A. Steinert, and F. Holzapfel, “Counter optimization-based testing of
flight envelope protections in a fly-by-wire control law using deep q-learning,” 2022.

Institute of Flight System Dynamics, Technical University of Munich 20

https://doi.org/10.1007/3-540-45864-6
https://doi.org/10.1007/3-540-45864-6
https://doi.org/10.1007/978-3-642-22627-4
https://doi.org/10.2514/1.C033517
https://doi.org/10.2514/1.G005236
https://mediatum.ub.tum.de/?id=1576216
http://www.falcon-m.com
https://doi.org/10.1038/nature14236
https://doi.org/10.48550/ARXIV.1509.06461

	Prologue
	Getting Started
	Installation
	Linear Solver Dependencies

	Configuration
	Run a First Demo

	Basic Concepts
	Definition, Setup, and Solution of a Counter Optimization Problem in COLIBRY

	Overview of the Implemented Counter Optimization Methods
	Linear Optimal Control-based Analysis
	Bi-level Linear Optimal Control-based Analysis
	Nonlinear Optimal Control-based Analysis
	Single Shooting-based Analysis
	Learning-based Analysis

	The COLIBRY User Interface
	Model Interfaces
	colibry.model.Linear
	colibry.model.Nonlinear
	colibry.model.Simulation
	colibry.model.Discrete

	Objective Interfaces
	colibry.objective.Cost
	colibry.objective.Reward

	Contributors
	References

