
M. Rieck1, M. Bittner2, B. Grüter3, J. Diepolder4,
P. Piprek5, C. Göttlicher6, F. Schwaiger7, B. Hosseini8,

F. Schweighofer9, T. Akman10, F. Holzapfel11

Institute of Flight System Dynamics
Technical University of Munich

www.falcon-m.com – falcon-m@tum.de

User Guide
v1.31_51c8d396_public

Author contributions:
1) architecture and original implementation, discrete controls
2) architecture and original implementation
3) bi-level optimization, maintenance
4) post-optimal sensitivities, Simulink interface, maintenance
5) robust optimal control, deployment, maintenance
6) system identification module
7) graphical and console user interface
8) system identification module (extension, maintenance)
9) software engineering, maintenance

10) maintenance
11) supervision and guidance 2024-01-03

www.falcon-m.com
mailto:falcon-m@tum.de

2 CONTENTS

Contents

1 Welcome to FALCON.m 4
1.1 Basic version . 5
1.2 Additional features and Add-ons . 5

2 Installation of FALCON.m 7
2.1 How to: Usage of IPOPT . 8
2.2 How to: Usage of SNOPT . 8
2.3 How to: Usage of FMINCON . 9

3 Quick Start Guide 9
3.1 Optimal Control Problem Formulation 9
3.2 Important Basic Ideas of FALCON.m . 10
3.3 Introductory Example: Time Optimal Car Trajectory 11

3.3.1 Implementation of Basic Problem in FALCON.m 12
3.3.2 Adding a Post-Processing Step . 16
3.3.3 Implementation of Path Constraints 17
3.3.4 Using the Path Constraint Builder 19
3.3.5 Simple Multi-phase Problem . 20
3.3.6 Multi-phase Problem using Pointconstraint Builder 21

3.4 Full Example: Optimal Aircraft Trajectories 22
3.4.1 2-D Kinematic Aircraft Approach 23
3.4.2 3-D Point Mass Aircraft Approach 25

4 Theoretical Fundamentals 27
4.1 Optimal Control Problem . 27
4.2 Collocation . 27

4.2.1 Time Transformation . 28
4.3 Numerical Optimization . 28

5 Problem Structure Used in FALCON.m 28
5.1 Optimization Problem Structure . 29
5.2 Command Line Interface . 29
5.3 falcon.Problem . 29
5.4 falcon.core.Phase . 48
5.5 falcon.core.Grid . 60
5.6 falcon.core.Model . 71
5.7 falcon.State . 74
5.8 falcon.Control . 82
5.9 falcon.Parameter . 90
5.10 falcon.Constraint . 98
5.11 falcon.core.PointFunction . 106
5.12 falcon.core.PathFunction . 109
5.13 falcon.discretization.Trapezoidal . 111
5.14 falcon.discretization.BackwardEuler . 113

Contents 3

5.15 falcon.solver.ipopt . 115
5.16 Common Objectives and Constraints . 128

5.16.1 Linear Path Function . 129
5.16.2 Quadratic Path Function . 129
5.16.3 Linear Point Function . 130
5.16.4 Quadratic Point Function . 131
5.16.5 Rate Limit . 132
5.16.6 Continuity Constraint . 133

6 Parameter Estimation Using FALCON.m 133

7 Derivative Construction 137
7.1 Function Mode . 138
7.2 System Mode . 138

7.2.1 Principles . 139
7.2.2 Constants . 139
7.2.3 Subsystems . 140
7.2.4 Variable Manipulation . 140
7.2.5 Important Remarks . 140

7.3 Simulation Model Builder . 141
7.4 Path Constraint Builder . 152
7.5 Point Constraint Builder . 160
7.6 Advanced Model Building . 168

7.6.1 Dependency Resolution . 168
7.6.2 Adding Individual States, Controls, Parameters and Outputs . . . 169
7.6.3 Derivative-free Model Builds . 169
7.6.4 Flexible Builder Configuration . 169
7.6.5 Centralized Derivative Cache . 169
7.6.6 Data Type Specification . 170
7.6.7 Variant Subsystems . 170
7.6.8 Model Wrapper Classes . 174

Index 181

Bibliography 184

4 1 WELCOME TO FALCON.M

1 Welcome to FALCON.m

FALCON.m is the FSD optimAL CONtrol tool for MATLAB that has been developed at
the Institute of Flight System Dynamics of Technische Universität München. FALCON.m
uses direct discretization methods in combination with gradient based numerical opti-
mization and automatic analytic differentiation to solve mathematical optimal control
problems. It is mainly tailored to solving complicated “real life” problems using full
discretization methods, additionally offering support for shooting techniques. If the
technical details of these methods are unfamiliar to you, you might want to check sec-
tion 4 of this document. If you are more interested in directly starting to solve problems,
section 2 will guide you through the installation of FALCON.m and the implementation
of your very first optimal control problem using the tool. Feel free to contact the devel-
opers at any time in case you experience any difficulties in using FALCON.m.

The following paragraphs give a very short overview of problems solved with FAL-
CON.m.

Figure 1: Sample optimal control problem solved with FALCON.m. Nine aircraft are
approaching Tokyo International Airport in parallel. The white circles represent the
separation limits to be kept between the different aircraft.

Figure 1 shows a visualization of a scenario in which nine aircraft are approaching
Tokyo International Airport in parallel. The trajectories of all of these aircraft have been
optimized for a given cost index, resulting in an optimal trade-off between arrival time
and fuel burn. The aircraft behavior was modeled based on point mass equations of
motion in three dimensional space, in the example including a variety of constraints
that ensure a realistic behavior of the aircraft.

The round shapes in the figure represent the separation limits between the aircraft
that needed to be fulfilled along the overall flight time for each individual pair of air-

1.1 Basic version 5

craft. The overall problem contained a dynamic system consisting of nonlinear dynamics
in 63 states and 27 controls. Anyway, FALCON.m allowed the solution of the problem
due to its automatic sparsity generation and its automatic differentiation.

1.1 Basic version

Generally, the basic version of FALCON.m is provided to you free-of-charge. With this
version, you can solve most of your real-life optimal control problems as it provides the
following features:

• Solution of optimal control problems for autonomous, explicit, nonlinear, first
order ordinary differential equations

• Analytic calculation of the Jacobian for cost-, constraint-, and dynamic model-
functions

• Interfaces to different highly efficient nonlinear programming (NLP) solvers

• Implementation of different dynamic models, path constraints, and point con-
straints

• Essentially arbitrary number of states, controls, parameters, and constraints in the
problem formulation

• Multi-phase optimal control formulations

• Trapezoidal Collocation and Backward Euler Full Discretization

• Post-processing and debugging features (Jacobian check, Simulation, Visualiza-
tion (GUI), Scaling analysis)

1.2 Additional features and Add-ons

The trajectory optimization research group is actively working on extending the basic
version of FALCON.m. The following add-ons have been or are currently developed and
used for various research activities:

Analytic Hessian The analytic Hessian add-on contains all required functionalities to
efficiently provide the second derivative information of the objective function and con-
straints to the NLP solver. This can significantly improve the convergence properties of
the problem compared to only providing the Jacobian included in the basic version (es-
pecially close to the optimal point, e.g. for near-optimal initial guesses). Furthermore,
the Hessian can be utilized to apply post-optimal sensitivity analyses to the solution of
the problem.

6 1 WELCOME TO FALCON.M

Post-optimal Sensitivities Post-optimal sensitivity analysis provides an efficient way
to approximate the optimal solution on a perturbed optimal control problem. This is
helpful e.g. if a problem has to be solved for a nominal parameter value, as well as
slightly changed values. Applying the implicit function theorem on the KKT-conditions
of the NLP, the first derivative of the solution (optimal trajectory, controls) with respect
to the disturbed parameter(s) can be determined analytically. For the objective function,
even the second derivatives is available.

Uncertainty Quantification This add-on offers several approaches, including stan-
dard ones like Monte-Carlo analysis as well as sophisticated methods like generalized
polynomial chaos, to obtain the distributions of optimal trajectories for given distribu-
tions of uncertain parameters. Furthermore, the output distributions can be accounted
for in the optimization, e.g. by adding properties to the objective function, such as min-
imizing a standard deviation value, or to the constraints, as in: the optimal trajectory
should respect this constraint with a confidence of two standard deviations. Further-
more, uncertainty quantification in the optimal control problem offers the possibility to
evaluate “chance constraints”, i.e. constraints that must be fulfilled to a certain proba-
bility level. By this, safe and robust optimal trajectories can be calculated.

System Identification Based on the core framework of FALCON.m, a system identifi-
cation tool was implemented which allows for estimating model parameters for experi-
ment data of system outputs. The extension offers a set of common objective functions,
such as least squares and maximum likelihood. Furthermore, the tool offers functional-
ity to design the optimal input for system identification, yielding a persistent excitation
with maximum information content on the system.

Discrete Controls While traditional optimal control software can find the optimal
history of continuous controls, such as a steering angle or an elevator deflection, this
extension treats discrete controls, such as a gear shift or a flap setting. An Outer Convex-
ification is applied as relaxation to allow for an efficient solution process where tailored
penalty approaches are implemented to restrict the control to the permissible discrete
values.

Trim Tool The internal version of FALCON.m additionally features a software package
for the computation of trim points for dynamic systems. These trim points can be used
for example for defining stationary boundary conditions in trajectory optimization or
parameter estimation problems. The trim tool exploits the efficient derivative evalu-
ation in FALCON.m and enables the computation of trim states and controls for grids
based on a generic trim template including essentially arbitrary constraints.

Bi-Level/Distributed Optimization This extension solves multi-optimization prob-
lems, i.e. an (upper level) optimization problem is treated which is dependent on the
solution of one or more (lower level) optimization/optimal control problems. This is
useful e.g. in the context of games or very large problems that can be deconstructed in

7

the sense of a primal decomposition (e.g. multiple aircraft approaching an airport). In
particular, for the case of very large optimal control problems, e.g. when considering
uncertainties, it is often possible to find unconnected subproblems which can be solved
individually. By distributing these problems together, with suitable adaptations to the
NLP solver parameters , the convergence time can be reduced significantly.

If you are interested in using these additional features in research projects with us, just
contact us under falcon-m@tum.de!

2 Installation of FALCON.m

To install FALCON.m on your computer, just unzip the contents of the zip-archive you
downloaded from http://www.falcon-m.com to a location where you want it to be
stored and where you have read and write access to.

Figure 2 shows the namespace folder +falcon, containing the required FALCON.m
files on a Windows machine. In the vendor folder additional external libraries required
by FALCON.m can be found. The folder examples contains some example problems
that help getting started. Depending on the version of FALCON.m you are using, addi-
tional files may exist in this folder.

Figure 2: Content of the folder containing FALCON.m

Before solving the first optimal control problem, run StartupCheck.m to check if
you are using a compatible version of MATLAB and all required external tools are avail-
able. Additionally, IPOPT will be automatically downloaded (in case you have a working
internet connection) as the default solver for solving your optimal control problem.

In order to be able to use FALCON.m without running the startup check again every
time, just add the folder containing the namespace folder +falcon to the MATLAB
path. In the example above, the path to be added would be D:\MATLAB_Libraries.
Do not add the folder with its subfolders but only the parent folder itself.

mailto:falcon-m@tum.de
http://www.falcon-m.com

8 2 INSTALLATION OF FALCON.M

2.1 How to: Usage of IPOPT

IPOPT1 [7] is the open-source interior point NLP (nonlinear program) solver that is most
commonly used with FALCON.m. If the StartupCheck routine does not find ipopt
on the MATLAB path, an installation assistant2 helps you complete the setup. Please
note that the available MEX function distributions of IPOPT differ, for example in terms
of included linear solver packages, and some of them may not work in combination with
certain MATLAB releases.

In particular:

• The distribution from COIN-OR3 includes HSL4 linear solvers. At the time of writ-
ing, the latest release, 3.11.8, is known to have some issues with recent MATLAB
releases, in particular it cannot be used after MATLAB R2020a.

• The mexIPOPT5 toolbox by Enrico Bertolazzi is fully compatible with recent MAT-
LAB releases on all platforms. However, it does not include the HSL linear solvers.
These can be obtained separately for best performance.

In case you have access to other IPOPT MEX functions, such as a version compiled
with additional libraries, you can place them in the folder falcon\vendor\ipopt or
add them to the MATLAB path.

2.2 How to: Usage of SNOPT

SNOPT is a commercial NLP solver distributed by Stanford Business Software Inc. that
can be used to solve NLP problems. The SNOPT license must be bought and the MATLAB
interface must be obtained.6

In cases where users want to use SNOPT for solving their NLPs, FALCON.m provides
an interface. In no way, FALCON.m distributes SNOPT: This means that the user must
obtain the license for SNOPT on his/her own.7

Install the SNOPT MATLAB interface files in a convenient location. Add all (sub-
)directories containing SNOPT routines to the MATLAB search path, using either the
GUI or addpath(), so that calls to snopt(), snset() etc. can be resolved. SNOPT
examples do not need to be available on the MATLAB search path.

Call StartupCheck() to verify that FALCON.m recognizes your SNOPT installa-
tion.

To use SNOPT with FALCON.m, create a solver adapter instance with solver = falcon.solver.snopt(problem).
Please note that the output structure for SNOPT differs from the one for IPOPT and

1https://github.com/coin-or/Ipopt
2Call falcon.auxiliary.helpers.IpoptInstallationAssistant().prompt() to run it

manually
3https://www.coin-or.org/download/binary/Ipopt/
4HSL. A collection of Fortran codes for large scale scientific computation. http://

www.hsl.rl.ac.uk/
5https://github.com/ebertolazzi/mexIPOPT/
6http://www.sbsi-sol-optimize.com/asp/sol_product_snopt.htm
7http://www.sbsi-sol-optimize.com/asp/sol_snopt.htm

https://github.com/coin-or/Ipopt
https://www.coin-or.org/download/binary/Ipopt/
http://www.hsl.rl.ac.uk/
http://www.hsl.rl.ac.uk/
https://github.com/ebertolazzi/mexIPOPT/
http://www.sbsi-sol-optimize.com/asp/sol_product_snopt.htm
http://www.sbsi-sol-optimize.com/asp/sol_snopt.htm

2.3 How to: Usage of FMINCON 9

therefore you might need to adapt your solver.Solve() command if you experience
errors.

The interface was last tested with SNOPT version 7.7.7.

2.3 How to: Usage of FMINCON

If you have MATLAB’s Optimization Toolbox installed and licensed, you are all set to
use FMINCON8. You just need to change your solver setup to:

solver = falcon.solver.fmincon_algo(problem)
Once more, the output structure of the solver.Solve command differs and adapta-
tions might be required. Additionally, it should be noted that FMINCON is inefficient
compared to IPOPT and SNOPT and should only be used for very small problems.

3 Quick Start Guide

This section should help getting started with FALCON.m. It firstly introduces the prob-
lem class that can be solved using the tool. Afterwards, the most important basic ideas
of the tool are listed, before example problems of increasing complexity are presented.

3.1 Optimal Control Problem Formulation

FALCON.m is able to solve optimal control problems of the following form:
Minimize the cost function

min J(x(t),u(t),p) (1)

subject to a set of constraints, formed by the differential algebraic equation[
ẋ(t)
y(t)

]
=

[
f(x(t),u(t),p)
h(x(t),u(t),p)

]
(2)

where x(t) specifies the states, ẋ(t) the state derivatives and y(t) additional model
outputs. The states x(t), the controls u(t) and the parameters p are limited by a lower
and an upper bound:

xlb ≤x(t) ≤ xub (3)
ulb ≤u(t) ≤ uub (4)
plb ≤p ≤ pub (5)

The problem is considered on the time interval [t0, tf] with each of the two either being
fixed or free. In the formulation presented here, t0 and tf are seen to be part of the
parameter vector p. Additionally, an arbitrary number of nonlinear constraints of the
form

glb ≤ g(y,x,u,p) ≤ gub (6)

8https://mathworks.com/help/optim/ug/fmincon.html

https://mathworks.com/help/optim/ug/fmincon.html

10 3 QUICK START GUIDE

may be imposed. A special type of constraints appearing in many problems are initial
and final boundary conditions specifying a start and an end state condition of the form

x0,lb ≤x(t0) ≤ x0,ub (7)
xf,lb ≤x(tf) ≤ xf,ub (8)

For all constraints, equality conditions can be achieved by simply setting the upper and
the lower limits to the same values.

�lb = �ub (9)

Remark: A maximization of the cost function J̄ can be achieved by simply choosing

J = −J̄ . (10)

3.2 Important Basic Ideas of FALCON.m

• FALCON.m uses direct discretization methods in order to solve optimal control
problems. The free variable is considered to be time throughout the implementa-
tion but may be chosen however suitable.

• For each value appearing in an optimal control problem, FALCON.m uses value
definition objects, specifying the names, bounds and scaling of the values as appro-
priate. If required, these values are extended to grids over time inside FALCON.m.
Examples for value definition objects are falcon.State, falcon.Control,
falcon.Constraint,
falcon.Cost, falcon.Parameter and some more.

• FALCON.m allows the solution of multi phase optimal control problems, where
each problem has to hold at least on falcon.core.Phase. Each phase holds
a stategrid, one or more controlgrids, and a model. Phases may or may not be
linked together.

• FALCON.m performs the optimization on a normalized time grid τ ∈ [0, 1] for
every phase that is mapped to the real time grid by a linear transformation. Prob-
lems with variable final and/or initial time can be solved by choosing the initial or
final time to be a free parameter.

• FALCON.m uses autonomous dynamics ("time-invariant") as default (the dynamic
equations may not directly depend on the free variable, time). Anyway, non-
autonomous dynamics can be tackled by introducing a new state t with the dy-
namics

ṫ = 1 (11)

that is added to the state vector of the problem. All other steps in creating the
model, e.g., adding a final time parameter to the phase, remain the same. The
collocation integrator should achieve that the final time in the state and the pa-
rameter are the same. If this is not the case an additional constraint may be added
to the final point to assure that the times match.

3.3 Introductory Example: Time Optimal Car Trajectory 11

• In order to achieve better numerical properties of a problem, FALCON.m internally
scales all appearing values by a fixed scaling factor. The following relationship is
used for scaling

�scaled = �original ·Mscaling (12)

It is recommended to scale all values to an order of magnitude of one, meaning
that e.g. the scaling factor of a value expected to be about 105 in the problem
should be scaled by a scaling factor Mscaling = 10−5.

• As FALCON.m uses gradient based optimization algorithms, initial guess values
for everything to be optimized need to be available. In case no initial guess values
are specified by the user, FALCON.m tries to create them itself.

• In order to solve an optimal control problem in FALCON.m four main steps are
required:

1. Define the model, constraint equations and problem structure in FALCON.m.

2. Create the analytic derivatives of all appearing functions and create MATLAB
executables (.mex files) from these functions.

3. Prepare the problem itself for solution.

4. Solve the problem using third party numerical optimization algorithms.

3.3 Introductory Example: Time Optimal Car Trajectory

In this subSection the trajectory from a given initial point to a given final point for a car
model is optimized for minimum time. Consequently, the cost function is the final time:

min J = tf (13)

The dynamic model of the car comprises the four states and the two controls listed in
Table 1.

Table 1: States and controls of the car example problem.

State Description
x Position in x-direction
y Position in y-direction
V Absolute velocity of the car
χ Course angle / direction of the velocity

Control Description
V̇cmd The absolute acceleration of the car / gas pedal input
χ̇cmd The angular velocity of the car / Steering wheel input

12 3 QUICK START GUIDE

The dynamics are given by:

ẋ = V · cosχ (14)
ẏ = V · sinχ (15)

V̇ = V̇cmd (16)
χ̇ = χ̇cmd (17)

Consequently, the combined state and control vectors are:

x =
[
x y V χ

]ᵀ
, u =

[
V̇cmd χ̇cmd

]ᵀ
(18)

with the limits given by

0 ≤ x ≤ 100 (19)
0 ≤ y ≤ 100 (20)
0 ≤ V ≤ 5 (21)

−2 · π ≤ χ ≤ 2 · π (22)

−0.1 ≤V̇cmd ≤ 0.1 (23)
−π/8 ≤χ̇cmd ≤ π/8 (24)

The initial and final conditions for the trajectory are given as equality constraints by

x0 =


0
0
5
0

 , xf =


100
100
5
0

 (25)

Finally, there are also outputs added:

ẏ = V · sinχ (26)
Vp1 = V + 1 (27)

(28)

These outputs are only used for debugging and not specifically constrained in the opti-
mization problem. Thus, they merely show how outputs can be defined.

3.3.1 Implementation of Basic Problem in FALCON.m

In order to solve this optimal control problem in FALCON.m, first create a new MATLAB
script (.m-file, in the following simply referred to as “the script”) to implement the
required code in.

Before setting up the optimal control problem itself, it is recommended to setup the
value definitions for the states, the controls and the required parameters appearing in
the problem. The states are created using the constructor of the state class:
falcon.State(Name,LowerBound,UpperBound,Scaling).
Similarly controls and parameters can be created by:

3.3 Introductory Example: Time Optimal Car Trajectory 13

falcon.Control(Name,LowerBound,UpperBound,Scaling)
falcon.Parameter(Name,Value,LowerBound,UpperBound,Scaling)
As states and controls will always appear on grids, no values can be specified whereas
parameters are always considered to be scalar, directly holding one value.

For the considered example, the following code results:

1 %% Define states, controls and parameter
2 x_vec = [...
3 falcon.State(’x’, 0, 100, 0.01);...
4 falcon.State(’y’, 0, 100, 0.01);...
5 falcon.State(’V’, 0, 5, 1);...
6 falcon.State(’chi’, -2*pi, 2*pi, 1)];
7

8 u_vec = [...
9 falcon.Control(’Vdot’ , -0.1, 0.1, 1);...

10 falcon.Control(’chidot’,-pi/8,+pi/8, 1)];
11

12 tf = falcon.Parameter(’FinalTime’, 20, 0, 40, 0.1);

The parameter used for the final simulation time is subject to optimization and uses a
value of 20 as the initial guess for the optimization.

Next, the optimal control problem itself needs to be constructed, where the first
step is to create a new falcon.Problem instance. This class is the main class of all
FALCON.m optimal control problems and holds all relevant information. It is created by

13 %% Define optimal control problem
14 % Create new problem instance
15 problem = falcon.Problem(’Car’);

where ’Car’ specifies the name of the problem. The state dynamics of the problem
will be discretized in time on a grid with 101 discretization points defined by tau:

16 % Specify discretization
17 tau = linspace(0,1,101);

Each problem defined in FALCON.m needs to have at least one phase. The following
code creates a new phase and directly adds it to the problem:

18 % Add a new phase
19 phase = problem.addNewPhase(@source_car, x_vec, tau, 0, tf);

The input arguments to the addNewPhase command are the following:

1. @source_car: A MATLAB function_handle to the (not yet existing) model
dynamics function

2. x_vec: The state vector of this phase

3. tau: The normalized time discretization for the states

4. 0: The start time of the phase. In this case the start time is fixed to zero.

5. tf: The final time of the phase. In this case the falcon.Parameter tf created
before is used. This way, the final time of the problem is subject to optimization
within the bounds specified before.

14 3 QUICK START GUIDE

Next, a control grid is added to the phase using the same discretization as for the states.
Note that each phase in the problem may contain multiple control grids with different
discretization grids.

20 % Add the control grid
21 phase.addNewControlGrid(u_vec, tau);

u_vec contains the definition of the control vector from before.
Afterward, the model outputs must be defined as well:

22 % Define model output
23 phase.Model.setModelOutputs([falcon.Output(’yDOT’);

falcon.Output(’Vp1’)]);

The initial and final boundary conditions for the states are set using the two com-
mands:

24 % Set the boundary conditions
25 % one column vector is short for equality bounds, i.e., lower bound ==

upper bound
26 phase.setInitialBoundaries([0;0;5;0]);
27 phase.setFinalBoundaries([100;100;5;0]);

when only one vector of values is given, FALCON.m uses the numbers as lower and
upper bounds, consequently leading to equality constraints. In case two vectors are
given, they are used as lower (first column vector input) and upper (second column
vector input) bounds, allowing to specify inequality constraints.

The final time tf shall be minimized in this example. This can easily be achieved by
using the addNewLinearPointCost function of the problem:

28 % Add the cost function
29 problem.addNewLinearPointCost(tf);

Then, the problem must be prepared for the solution by invoking the following com-
mand:

30 % Prepare problem for solving
31 problem.Bake();

Now, the problem may be solved by adding the following command:

32 % Solve the problem
33 solver = falcon.solver.ipopt(problem); % solver object
34 solver.Options.MajorIterLimit = 500; % maximum number of

iterations
35 solver.Options.MajorFeasTol = 1e-5; % feasibility tolerance
36 solver.Options.MajorOptTol = 1e-5; % optimality tolerance
37

38 solver.Solve(); % solve command

In order to solve the problem, make sure that the FALCON.m folder has been added
to your MATLAB path as described in Section 2 and run the script. Obviously, the dy-
namic model for the car has not yet been implemented and the optimization cannot be
run. Anyway, FALCON.m will create the interface for the function holding the dynamic
model after asking if it should do so. Answer the question with y in the MATLAB console
and hit enter. Our script will throw some errors as the problem could not be solved, but

3.3 Introductory Example: Time Optimal Car Trajectory 15

FALCON.m created a MATLAB file named source_car in the current directory. The
file should contain the following function interface:

1 function [states_dot, y] = source_car(states, controls)
2 % model interface created by falcon.m
3

4 % Extract states
5 x = states(1);
6 y = states(2);
7 V = states(3);
8 chi = states(4);
9

10 % Extract controls
11 Vdot = controls(1);
12 chidot = controls(2);
13

14 % ------------------------ %
15 % implement the model here %
16 % ------------------------ %
17

18 % implement state derivatives here
19 x_dot = ;
20 y_dot = ;
21 V_dot = ;
22 chi_dot = ;
23 states_dot = [x_dot; y_dot; V_dot; chi_dot];
24

25 % specify outputs
26 y = [yDOT; Vp1];
27

28 end

Insert the model equations into the function by overwriting the lines:

18 % implement state derivatives here
19 x_dot = V*cos(chi);
20 y_dot = V*sin(chi);
21 V_dot = Vdot;
22 chi_dot = chidot;

Furthermore, insert the output equations:

25 % specify outputs
26 y = [V*sin(chi); V+1];

Afterward, rerun the previously created script containing the problem definition. While
executing the first time, FALCON.m needs some time to create the analytic derivatives
of the dynamic model before numerically solving the problem.

After the problem was solved, you can plot the results calling problem.PlotGUI
(experimental) or by extracting the data from the problem in a custom plot function.
In order to create a plot showing the states, the following code may be added to the
problem definition script below problem.Solve():

1 %% Plot
2 figure
3 for numState=1:4

16 3 QUICK START GUIDE

4 subplot(2,2,numState); grid on; hold on;
5 xlabel(’time’);
6 ylabel(phase.StateGrid.DataTypes(numState).Name);
7

8 plot(phase.RealTime, phase.StateGrid.Values(numState,:), ’x-’);
9 end

Figure 3 shows the results of the problem using slightly different plot commands.

xpos

0 20 40 60 80 100

y
p
o
s

0

10

20

30

40

50

60

70

80

90

100
Trajectory

time

0 10 20 30

s
p
e
e
d

4

4.5

5

5.5

6

time

0 10 20 30

D
ir
e
c
ti
o
n
 [
d
e
g
]

-10

0

10

20

30

40

50

time

0 10 20 30

s
p
e
e
d
 d

o
t
c
m

d

×10-7

-4

-2

0

2

4

time

0 10 20 30

D
ir
e
c
ti
o
n
 d

o
t
c
m

d
 [
d
e
g
/s

]

-30

-20

-10

0

10

20

30

Figure 3: Results for the time minimal car trajectory

3.3.2 Adding a Post-Processing Step

Currently, the model outputs are calculated directly inside the model, although they
are actually not required in the optimization procedure (which means they are not
constrained). This means that significant computational overhead is introduced as not
only the time history of the values but also their derivatives are calculated in each
iteration of the optimization problem.

To reduce the computational effort required for calculating such “debugging” vari-
ables, FALCON.m overs a feature called “post-processing”. By this feature, debugging
calculations can be conducted automatically after the actual solution of the optimiza-
tion problem. To use it the following lines may be added before preparing the problem
for the solution:
30 % apply post-processing to each phase
31 % problem.addPostProcessingStep(function_handle, state/control/output
32 % objects, debug value object(s))

3.3 Introductory Example: Time Optimal Car Trajectory 17

33 problem.addPostProcessingStep(@(x) x+1, {x_vec(3)},
falcon.Value(’Vp1’));

34 problem.addPostProcessingStep(@postProcessFcn, {x_vec(4),x_vec(3)},
[falcon.Value(’yDOT’),falcon.Value(’V_square’)]);

35

36 % Prepare problem for solving
37 problem.Bake();

Here, postProcessFcn is a simple function calculating two output/debug vari-
ables:

1 function [y_dot,V_square] = postProcessFcn(chi,V)
2 % ------------------------ %
3 % implement the post-processing step here %
4 % ------------------------ %
5

6 % implement post-processing value
7 y_dot = V.*sin(chi);
8 V_square = V.^2;
9

10 % EoF
11 end

It is important to note that each post-processing function must be capable of element-
wise

This will automatically calculate the desired debugging outputs after the solution
and thus, without computational overhead during the optimization. Still, the values are
saved in a grid and can be accessed both through the problem.PlotGUI as well as
the phase object.

It should be noted that the introduced commands add a post-processing evaluation
to each phase of the problem automatically. If it is only desired to have post-processing
in specific phases of the problem, the command phase.addPostProcessingStep
can be used. It is called with the same input structure like for the problem but only for
specific phases.

It should be noted that older FALCON.m versions allow to add post-processing steps
after the problem solution. While this is generally still possible in the current version
as well, the behavior is deprecated and will be removed in a future release. Thus, the
version to add the steps before the problem solution should be used.

3.3.3 Implementation of Path Constraints

Next, the rate of turn of the car should be limited depending on the velocity of the car:

− 1

2 · V
≤ χ̇cmd ≤

1

2 · V
(29)

This constraint should be active along the whole path of the car and is therefore called
path constraint. This constraint will be implemented using the two inequality con-

18 3 QUICK START GUIDE

straints:

clb = − 1

2 · V
− χ̇cmd ≤ 0 (30)

cub = χ̇cmd −
1

2 · V
≤ 0 (31)

Add the following code in the script somewhere before problem.Solve.
1 % Path Constraint
2 pathconstraints = [...
3 falcon.Constraint(’turnlb’, -inf, 0);...
4 falcon.Constraint(’turnub’, -inf, 0)];
5 phase.addNewPathConstraint(@source_path, pathconstraints,tau);

In this code, first two falcon.Constraint objects are created specifying the names
and the lower and upper bounds of the newly added constraints. Afterwards, the
path constraint function is added to the phase of the problem. The input arguments
to addNewPathConstraint are:

1. @source_path: A MATLAB function_handle to the (not yet existing) path
function.

2. pathconstraints: The objects defining the outputs of the path function includ-
ing their limits.

3. tau: The normalized grid to evaluate the path constraint function on. In this case
the same grid as for the states and controls is selected.

Run the script again and let FALCON.m create the function interface for you. After
FALCON.m created the interface file and you implemented equations (30) and (31), the
resulting path constraint function should look the following:

1 function [constraints] = source_path(states, controls)
2 % constraint interface created by falcon.m
3

4 % Extract states
5 x = states(1);
6 y = states(2);
7 V = states(3);
8 chi = states(4);
9

10 % Extract controls
11 Vdot = controls(1);
12 chidot = controls(2);
13

14 % ----------------------------- %
15 % implement the constraint here %
16 % ----------------------------- %
17

18 % implement constraint values here
19 turnlb = -0.5/V - chidot;
20 turnub = chidot - 0.5/V;
21 constraints = [turnlb; turnub];
22

23 end

3.3 Introductory Example: Time Optimal Car Trajectory 19

Now, the problem can be solved again, resulting in histories as displayed in Figure
4. Feel free to play with the example and to learn more about FALCON.m. The next
example should give a more detailed overview of the features of FALCON.m and how to
use them.

xpos

0 20 40 60 80 100

y
p

o
s

0

10

20

30

40

50

60

70

80

90

100
Trajectory

time

0 20 40

s
p

e
e

d

4.75

4.8

4.85

4.9

4.95

5

time

0 20 40

D
ir
e

c
ti
o

n
 [

d
e

g
]

0

20

40

60

80

time

0 20 40

s
p

e
e

d
 d

o
t

c
m

d

-0.1

-0.05

0

0.05

0.1

time

0 20 40

D
ir
e

c
ti
o

n
 d

o
t

c
m

d
 [

d
e

g
/s

]

-6

-4

-2

0

2

4

6

Figure 4: Results for the time minimal car trajectory fulfilling the path turn rate limits

3.3.4 Using the Path Constraint Builder

We will now examine the case where we do not use the automatic function creation
method provided by FALCON.m, but build the path constraint “by hand”.
In order to do this add the code

1 pconMdl = falcon.PathConstraintBuilder(’CarPCon’, [], x_vec(3),
u_vec(2), [], @source_path_reduced);

2 pconMdl.Build();

to the script.
You should observe that we only input the required values for the path constraint

to be evaluated, i.e., the velocity state and the course derivative control. This is done
by adding the required data types at the appropriate positions in the path constraint
builder environment that has the general interface:

1 pathCon = falcon.PathConstraintBuilder(’Name’,Outputs,States,
2 Controls,Parameters,Handle)

20 3 QUICK START GUIDE

Adding only the required inputs can significantly speed up the build and evaluation
procedure as the number of necessary symbolic differentiations and not required eval-
uations is significantly reduced.

Now, you can copy the original path constraint function and change it to the follow-
ing form such that it suits the path constraint builder interface:

1 function [constraints] = source_path_reduced(V, chidot)
2

3 % ----------------------------- %
4 % implement the constraint here %
5 % ----------------------------- %
6

7 % implement constraint values here
8 turnlb = -0.5/V - chidot;
9 turnub = chidot - 0.5/V;

10 constraints = [turnlb; turnub];
11

12 end

Finally, you must exchange the call to the added path constraint in the script
1 phase.addNewPathConstraint(@CarPCon, pathconstraints, tau);

Again, we add the path constraint to the standard discretized time grid.
Run the optimization: The results should be the same, but you should see some

differences in how the Bake is conducted and in the convergence time.
It should be noted that parameters, in cases where you have these entering the

model of the path constraint, must be added to the path constraint object manually. Fir
this purpose, the following command structure can be used:

1 pathConObj = phase.addNewPathConstraint(@CarPCon, pathconstraints, tau);
2 pathConObj.setParameters(Parameters);

This gives the possibility to only add the required parameters to the path constraint.
Take into account that an error is issued if you have parameters in the model but not
in the constraint object and vice versa. Note that this behavior is the same as when
adding a model with parameters to a phase, where you also have to manually specify
the parameters (and outputs) in the Phase object.

3.3.5 Simple Multi-phase Problem

In order to use the car model within a multi-phase environment, we first of all must
define additional time parameters:

1 %% Define parameter
2 tfint = falcon.Parameter(’IntermediateTime’, 20, 0, 40, 0.1); %

Intermediate time = final time of phase 1
3 tf = falcon.Parameter(’FinalTime’, 40, 0, 80, 0.1); % Final time =

final time of phase 2

Furthermore, it is necessary to update the state boundaries such that the second phase
is feasible:

1 %% Define States
2 x_vec = [...

3.3 Introductory Example: Time Optimal Car Trajectory 21

3 falcon.State(’x’, 0, 200, 0.01);...
4 falcon.State(’y’, 0, 200, 0.01);...
5 falcon.State(’V’, 0, 5, 1);...
6 falcon.State(’chi’, -2*pi, 2*pi, 1)];

The next thing is to adapt the already defined first phase, which now ends at the inter-
mediate time:

1 % Change the first phase
2 phase = problem.addNewPhase(@source_car, x_vec, tau, 0, tfint);

Afterwards, we must define a second phase as follows:
1 % Add a second phase Phase
2 phase2 = problem.addNewPhase(@source_car, x_vec, tau, tfint, tf);
3 phase2.addNewControlGrid(u_vec, tau);
4 phase2.Model.setModelOutputs([falcon.Output(’dummyout’);

falcon.Output(’dummy1’)]);
5

6 % Set final Boundary Condition
7 phase2.setFinalBoundaries([200;0;5;0]);
8

9 % Path Constraint
10 pathconstraints = [...
11 falcon.Constraint(’turnlb’, -inf, 0);...
12 falcon.Constraint(’turnub’, -inf, 0)];
13 phase2.addNewPathConstraint(@source_path, pathconstraints, tau);

Note that the second phase now starts at the intermediate time and ends with the
final time. Additionally, the second phase only has a final boundary condition defined.
Therefore, the command

1 % Connect the phases
2 problem.ConnectAllPhases();

must be used such that the first and the second phase are connected and we get a
smooth trajectory. You are now able to solve a multi-phase problem.

3.3.6 Multi-phase Problem using Pointconstraint Builder

In Section 3.3.5, we use the problem.ConnectAllPhases(); command to auto-
matically connect the phases and define an appropriate point constraint. In this exam-
ple, we will work with the pointconstraint builder directly to show that the procedure is
the same and the builder can connect two arbitrary phases at two arbitrary time points.

Therefore, remove the problem.ConnectAllPhases(); command and instead
implement the point constraint as follows:

1 % Connect the phases by the point constraint builder
2 pconObj = falcon.PointConstraintBuilder(’ConnectPhases’);
3

4 % Add the phase inputs (i.e., the states) that are required for one time
5 % step in each phase
6 pconObj.addPhaseInput(0,x_vec,0,1); % This is the first phase
7 pconObj.addPhaseInput(0,x_vec,0,1); % This is the second phase

(that could also have another input structure)
8

22 3 QUICK START GUIDE

9 % Now use an anonymous function handle to build the constraint
10 % Remember that the phase inputs are automatically split up into grids
11 % (_g*)
12 pconObj.addSubsystem(@(x,y) x - y,...
13 {’states_g1’, ’states_g2’},...
14 {’phaseDefect’});
15

16 % Split the vector in single constraints
17 pconObj.SplitVariable(’phaseDefect’,{’x_PhaseDefect’;
18 ’y_PhaseDefect’; ’V_PhaseDefect’;’chi_PhaseDefect’});
19

20 % Constraint value names
21 pconObj.setConstraintValueNames({’x_PhaseDefect’;
22 ’y_PhaseDefect’;’V_PhaseDefect’;’chi_PhaseDefect’});
23

24 % Build the constraint
25 pconObj.Build;

After building the point constraint, we have to include the created point constraint
model in the optimal control problem. Therefore, the following lines of code must be
added:

1 % Define the constraint data types (all must be zero)
2 connectConstraints = [falcon.Constraint(’x_PhaseDefect’,0,0,1,0,true);
3 falcon.Constraint(’y_PhaseDefect’,0,0,1,0,true);
4 falcon.Constraint(’V_PhaseDefect’,0,0,1,0,true);
5 falcon.Constraint(’chi_PhaseDefect’,0,0,1,0,true)];
6

7 % Add the point constraint to the problem
8 % Within the first phase the last normalized time step (tau = 1) must be
9 % added, while we have the first normalized time step (tau = 0) in the

10 % second phase
11 problem.addNewPointConstraint(@ConnectPhases,connectConstraints,...
12 problem.Phases(1),1,problem.Phases(2),0);

Overall, the problem can now be solved again, the results are hopefully the same as
before and you should actually also see a very similar convergence behavior.

Again, in case you want to connect phases in the beginning and end, it is much eas-
ier to just use the problem.ConnectAllPhases(); command instead of the point
constraint builder. But in cases, where you want to connect different intermediate time
points (e.g., for symmetry or periodicity), the point constraint builder provides you with
a viable option.

Take into account that parameters, in cases where you have these entering the model
of the point constraint, must be added to the point constraint object manually once
more. This is done as with the path constraint case.

3.4 Full Example: Optimal Aircraft Trajectories

In the following sections, an aircraft related optimal control problem will be presented.
Starting with a pretty simple model and no additional constraints, the problem will step
by step be extended to show a large part of the feature set of FALCON.m.

3.4 Full Example: Optimal Aircraft Trajectories 23

3.4.1 2-D Kinematic Aircraft Approach

First, a simple aircraft model approaching an airport will be considered, minimizing
the thrust applied during the flight. The dynamic model contains four states and is
controlled by two controls as listed in Table 2.

Table 2: States and controls of a first, simple, kinematic aircraft model

State Description Lower limit Upper limit
x Lateral position of the aircraft − inf inf
z Vertical position of the aircraft −12000m −304m
V Absolute velocity of the aircraft 60 m

s
300 m

s

γ Climb angle −0.15 rad 0.15 rad

Control Description Lower limit Upper limit
CT Normalized Thrust 0 1
CL Lift coefficient −0.5 1.5

The model equations used are

ẋ = V · cos γ (32)
ż = −V · sin γ (33)

V̇ =
1

m
·
(
T −

(ρ
2
· V 2 · S · (CD0 + k · C2

L)
))
− g sin γ (34)

γ̇ =
1

m · V
·
(ρ

2
· V 2 · S · CL

)
− g

V
cos γ (35)

assuming the aircraft mass m = 55000 kg, the gravitational acceleration g = 9.81 m
s

, the
air density ρ = 1.225 kg

m3 , and the wing reference area S = 123m2. The aerodynamic
drag is quantified by CD0 = 0.03 and k = 0.04. Similarly to the car example in section
3.3, first the states, controls and the final time parameter are defined:

1 % Create the states and controls
2 states = [falcon.State(’x’, -inf, inf, 1e-3);
3 falcon.State(’z’, -12e3, -304, 1e-3);
4 falcon.State(’V’, 60, 200, 1e-2);
5 falcon.State(’gamma’,-0.15, 0.15, 1)];
6

7 controls = [falcon.Control(’C_T’, 0, 1, 10);
8 falcon.Control(’C_L’, -0.5, 1.5, 1)];
9

10 % Create the final time parameter
11 tf = falcon.Parameter(’Final_Time’, 1000, 20, 4e3, 1e-3);

Afterwards, the problem is created, the normalized time discretization is set up and
the required phase, including its control grid is added to the problem:
12 %% Create the problem
13 problem = falcon.Problem(’AC_Approach’);

24 3 QUICK START GUIDE

14

15 % Specify Discretization
16 tau = linspace(0, 1, 1001);
17

18 % Add a new Phase
19 phase = problem.addNewPhase(@source_aircraft, states, tau, 0, tf);
20 phase.addNewControlGrid(controls, tau);

In this example, the initial boundary conditions are fixed to the following values,
while the final condition may very between the given boundaries:

21 % Set Boundary Condition
22 phase.setInitialBoundaries([-250e3; -10e3; 200; 0]);
23 phase.setFinalBoundaries([0; -304; 80; -0.05], [0; -304; 100; 0.05]);

As defined by the boundary conditions, the problem describes a descent to a specific
point, e.g. the touchdown point on the runway. A relevant objective function is the fuel
consumption of the aircraft during this phase, which can be approximated by the thrust
applied over the entire time. To this end, we introduce a control cost, i.e. the sum of
squares of the selected control at every time point is penalized:

24 % Add Cost Function
25 cost = phase.addNewQuadraticPathCost(controls(1));

After solving the problem with

26 % Solve Problem
27 problem.Solve();

the results can be displayed and analyzed using the plot GUI of FALCON.m by simply
calling

28 %% Plot
29 problem.PlotGUI;

Note, that again when running the above listed code the first time, the problem
may not be solved, as the model dynamics added in line 19 do not yet exist. Let FAL-
CON.m create the required function interface for you by selecting y when asked. Put
the following model dynamics into the function file:

1 % Constants
2 m = 55e3; % kg
3 rho = 1.225; % kg/m^3
4 S = 123; % m^2
5 T_max = 2e5; % N
6

7 % Calculate thrust
8 T = T_max * C_T;
9

10 % Calculate drag
11 C_D = 0.03 + 0.04 * C_L^2;
12 D = rho/2 * V^2 * S * C_D;
13

14 % implement state derivatives here
15 x_dot = V * cos(gamma);
16 z_dot = -V * sin(gamma);
17 V_dot = 1/m * (T-D) - g*sin(gamma);

3.4 Full Example: Optimal Aircraft Trajectories 25

18 gamma_dot = 1/m * rho/2 * V * S * C_L - g/V*cos(gamma);
19

20 % Combine state_dot values
21 states_dot = [x_dot; z_dot; V_dot; gamma_dot];

Now, you should be able to solve the problem by running the script again. The plot
GUI may now be used to create plots similar to those in Figure 5.

SELECT VALUES:

X-Axis Component:

States_V

Y-Axis Component:

S...

x

z

V

gamma

Simulated...

Cos...

Con...

C_T

C_L

C...

ModelStat...

SimulatedModelSta...

EDIT PLOT:

Title: none

X Label: none

Y Label: none

Legend: northeast none

EDIT LINE:

Title:

Phases: Fill phase gaps. Mark phase start.

Line: none 0,5

Marker: none 6

-2.5 -2 -1.5 -1 -0.5 0

105

-12000

-10000

-8000

-6000

-4000

-2000

0
z over x

z

0 500 1000 1500 2000 2500
80

100

120

140

160

180

200
V over time

V

0 500 1000 1500 2000 2500
-0.1

-0.05

0

0.05

0.1

0.15
gamma over time

gamma

0 500 1000 1500 2000 2500
0.05

0.06

0.07

0.08

0.09

0.1
C_T over time

C_T

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1.2
C_L over time

C_L

80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2
C_L over V

C_L

Figure 5: Results of the first simple aircraft trajectory optimization problem.

3.4.2 3-D Point Mass Aircraft Approach

Now we extend the two dimensional model from the previous example to a three dimen-
sional aircraft model. The goal of the following example is to show the more advanced
capabilities in FALCON.m regarding modeling and solving optimal control problems.
Please note that we chose a dynamic model with a relatively low order of complexity to
keep the focus on the implementation in FALCON.m rather than blurring the important
aspects by complex physical relationships. The three dimensional model now has a total
number of six states by adding the equations for the lateral position y and the lateral
dynamics of the course angle χ:

26 3 QUICK START GUIDE

ẋ = V · cosχ · cos γ (36)
ẏ = V · sinχ · cos γ (37)
ż = −V · sin γ (38)

V̇ =
1

m
· (T −D −W sin γ) (39)

χ̇ =
1

m · V · cos γ
· L · sinµ (40)

γ̇ =
1

m · V
· (L−W cos γ) (41)

with the lift force L the drag D and the weight W , defined as:

L =
ρ

2
· V 2 · S · CL (42)

D =
ρ

2
· V 2 · S · CD (CL) (43)

W = m · g (44)

Additionally to the control variables we used in the previous example, namely the nor-
malized thrust CT and the lift coefficient CL, we add the bank angle µ to control the
plane in which the lift force acts on the aircraft.
Please note that the way the drag coefficient is calculated also differs from the 2D case.
For this example we want to assume that CD is given as tabular data as some function
of the lift coefficient CL to show how to implement functions that are not analytically
differentiable.
Moreover we now want the model to return the value for the lift L. This output will
be used later to introduce a pathconstraint for the scalar load factor in the z-direction nz.

The modeling philosophy in FALCON.m follows a subsystem based approach. This
means that the basic components of our dynamic model are encapsulated in MATLAB
functions with user defined inputs and outputs. These inputs and outputs may be scalar
or vectorized values that, for the ease of implentation, may be combined or split to
obtain new variables. The different types of variables that can be defined for modeling
the state space dynamics [y, ẋ] = f (x, u, p) in the modeling part of FALCON.m are:

• States x

• Controls y

• Parameters p

and to define the return arguments of the model:

• Outputs y

• State-Derivatives ẋ

27

Aditionally one can introduce constant values c that are fix and may not change
during the optimization. Please be aware that the difference between the parameters p
and the constant values c is that the parameters p are optimizable (if not fixed in a later
modeling step) and the constant values are specified only when the model is built and
can not be changed after compiling the model.
To implement the model lets first define the states, the controls and parameters as arrays
of falcon.State, falcon.Control and falcon.Parameter objects:

1 % Create the states and controls
2 states = [falcon.State(’x’, -inf, inf, 1e-3);
3 falcon.State(’y’, -inf, inf, 1e-3);
4 falcon.State(’z’, -12e3, 0, 1e-3);
5 falcon.State(’V’, 60, 300, 1e-2);
6 falcon.State(’chi’,-inf, inf, 1)
7 falcon.State(’gamma’,-0.15, 0.15, 1)];
8

9 controls = [falcon.Control(’C_T’, 0, 1, 10);
10 falcon.Control(’C_L’, 0, 1, 1);
11 falcon.Control(’mue’, -pi/4, pi/4, 1)];
12

13 parameters = [falcon.Parameter(’m’, 55e3);

To set the lift force L as model output y we have to define a falcon.Constraint-object
and hand it over to our subsystem derivative instance by using the method FALCON-
model.addOutputs:

1 outputs = falcon.Constraint(’L’, 0, 0, 80e3);
2 falcon_model.addOutputs(outputs);

4 Theoretical Fundamentals

Matlab class library Numerical collocation Uses third party numerical optimization al-
gorithms Uses mex and C files for maximum performance

4.1 Optimal Control Problem

When using FALCON.m, optimal control problems of the form presented in section 3.1
are to be solved.

4.2 Collocation

[1] Optimization parameter vector z is built up from

z =
(
x0 x1 . . . xK u0 . . . uN p

)ᵀ (45)

Integration defect

ck(z) = xk(z)− xk+1(z) + hk · Φ(xk(z),xk+1(z),uk(z),uk+1(z),p(z))
!

= 0 (46)

for general integration scheme Φ(xk(z),xk+1(z),uk(z),uk+1(z),p(z)).

28 5 PROBLEM STRUCTURE USED IN FALCON.M

Examples:
Euler backward collocation

xk(z)− xk+1(z) + hk · f(xk+1(z),uk+1(z),p(z))
!

= 0. (47)

Trapezoidal collocation

xk(z)− xk+1(z) +
hk
2
· (f(xk(z),uk(z),p(z)) + f(xk+1(z),uk+1(z),p(z)))

!
= 0. (48)

Resulting Constraint vector

C(z) =


x0(z)
xf (z)

xk(z)− xk+1(z) + hk · Φ(xk(z),xk+1(z),uk(z),uk+1(z),p(z))
C(x(z),u(z),p(z), t(z))

 (49)

4.2.1 Time Transformation

linear time transformation Normalized time τ ∈ [0, 1] t0 and tf : initial and final time
linear transformation

t = t0 + (tf − t0) · τ. (50)

transformed time derivative

dt

dτ
= (tf − t0) (51)

transformed state dynamics

dx(t(τ))

dτ
=

dx(t)

dt
· dt

dτ
= f (x(t(τ)),u(t(τ)),p, t(τ)) · (tf − t0). (52)

See e.g. [3, 2]

4.3 Numerical Optimization

FALCON.m does not provide own numerical optimization algorithms but features a gen-
eral purpose interface with adapters to IPOPT, and FMINCON.

5 Problem Structure Used in FALCON.m

FALCON.m represents each optimal control problem by a set of MATLAB classes. This
algorithmic model of the problem allows for great flexibility while maintaining high
computational performance.

5.1 Optimization Problem Structure 29

Figure 6: Structure of a problem represented in FALCON.m.

5.1 Optimization Problem Structure

The problem structure use by FALCON.m is introduced in Figure 6. The next subsections
are going to introduce the definition of these structure elements

5.2 Command Line Interface

FALCON.m also provides a command line interface (CLI) that can be used to directly
define FALCON.m problems using the MATLAB command line. The important command
are illustrated in Figure 7.

The red boxed command is the main command for creating a new project: Here all
user defined variables and the general workflow of the FALCON.m problem statement
are defined in separate files. Thus, the user must only concentrate on setting correct
boundaries and implementing the model rather than on having to deal with basic for-
matting and workflow. This behavior is also illustrated in Figure 8.

5.3 falcon.Problem

Parent Classes: falcon.core.HasToStruct, falcon.core.Handle, falcon.core.HasName

30 5 PROBLEM STRUCTURE USED IN FALCON.M

Figure 7: Important commands of FALCON.m command line interface.

Figure 8: Example command to create a complete FALCON.m project using the com-
mand line interface.

Properties

+ Phases (read-only)
Array keeping all falcon.core.Phases of this problem.

+ Parameters (read-only)
Array keeping all falcon.Parameters of this problem.

+ PointConstraintFunctions (read-only)
Array keeping all falcon.core.PointFunction objects of this problem.

+ MayerCostFunctions (read-only)
Array keeping all falcon.core.PointFunction objects used as Mayer cost functions
of this problem.

5.3 falcon.Problem 31

+ isCrunchy (read-only)
Determines if the optimization problem has already been baked. If true, the prob-
lem can no longer be altered. Use falcon.Problem.UnBake to make it editable
again.

+ DiscretizationMethod (read-only)
The falcon.discretization.DiscretizationMethod method used to discretize this op-
timal control problem. Use falcon.Problem.setDiscretizationMethod to set this
property. Available discretization methods can be found in falcon.discretization.’name’.
(default = falcon.discretization.Trapezoidal)

+ CostOffset (read-only, Default = 0)
Offset for the sum of all cost functions

+ CostScaling (read-only, Default = 1)
The numeric scaling factor for the sum of all cost functions.

+ UseHessian (read-only)
Flag that determines if the analytic Hessian (2nd Derivative) of the problem is
calculated (ipopt only). The Hessian mode is invoked in the falcon.Problem con-
structor.

+ DisableAbort (read-only)
Flag that determines use of drawnow to allow for optimization abort in OptiFunc.

+ isSolved (read-only)
Flag to determine whether the problem is already solved

+ doSimInitGuess (read-only)
Use simulation as initial guess for state

+ MajorIterLimit (read-only, Default = 500)
MajorIterLimit for shortcut problem.Solve

+ MajorFeasTol (read-only, Default = 1e-05)
MajorFeasTol for shortcut problem.Solve

+ MajorOptTol (read-only, Default = 1e-05)
MajorOptTol for shortcut problem.Solve

+ gSparsity (Dependent)
Get the sparsity pattern of the gradient matrix as a sparse matrix

+ HSparsity (Dependent)
Get the sparsity pattern of the Hessian matrix as a sparse matrix

+ StateValues (Dependent)
extract and concatenate all state values

32 5 PROBLEM STRUCTURE USED IN FALCON.M

+ StateNames (Dependent)
extract and concatenate all state names

+ ControlValues (Dependent)
extract and concatenate all control values

+ ControlNames (Dependent)
extract and concatenate all control names

+ OutputValues (Dependent)
extract and concatenate all output values

+ OutputNames (Dependent)
extract and concatenate all output names

+ StateDotValues (Dependent)
extract and concatenate all state_dot values

+ StateDotNames (Dependent)
extract and concatenate all output names

+ CostateValues (Dependent)
extract and concatenate all costates values

+ PostProcessedValues (Dependent)
extract and concatenate all post-processing values

+ PostProcessedNames (Dependent)
extract and concatenate all post-processing names

+ RealTime (Dependent)
extract real time of problem

+ Name (read-only)
Name of object.

Methods

Problem (Constructor)
Constructs a falcon.Problem object.

> addNewControlCost

> addNewLinearPointCost
Minimize (default) or maximize given variables.

> addNewMayerCost
Add a new Mayer cost function to the Problem.

5.3 falcon.Problem 33

> addNewOutputCost

> addNewParameterCost

> addNewPhase
Add a new Phase to the Problem.

> addNewPointConstraint
Add a new point constraint to the Problem.

> addNewQuadraticPointCost
Minimize (default) or maximize a quadratic form.

> addNewStateCost

> addPostProcessingStep
Add a post processing step to be performed after the problem has been solved.

> addProblemExtension
Adds an existing problem extension to the stack

> Bake
Bake the problem. (Prepare it for being solved).

> byName
Get a struct for name based access to the object array.

> byNameUnique
Get a struct for name based access to the object array, allowing only unique names.

> CheckGradient
Check the analytic gradient matrix of the problem against finite differences.

> CheckScaling
Check the scaling of the cost function, constraints values, optimization variables
as well as the gradient of the problem.

> clearPostProcessing
falcon.Problem/clearPostProcessing is a function. clearPostProcessing(obj)

> ConnectAllPhases
Connect all phases in the problem.

> ConnectPhases
Connect two phases in the problem.

> CreateDebugInfo
Create additional information helpful for debugging.

34 5 PROBLEM STRUCTURE USED IN FALCON.M

> FastBake
Fast bake the problem, i.e., only change initial guesses and boundary conditions.

> getParametersByName
Get problem parameters by name.

> getTimeSeries
Extract the states, controls, outputs, statesdot and postprocessed values into Mat-
lab TimeSeries object.

> OpenPlotGUI (Static)
Opens the plot graphical user interface with the given problem.

> PlotGUI
Opens the graphical user interface for plotting of the current problem.

> setCostOffset
falcon.Problem/setCostOffset is a function. setCostOffset(self, offset)

> setCostScaling
Set the numeric scaling of the overall cost function value

> setDiscretizationMethod
Set the discretization method of this problem.

> setMajorFeasTol
Set the major feasibility tolerance for the problem.Solve method.

> setMajorIterLimit
Set the major iteration limit for the problem.Solve method.

> setMajorOptTol
Set the major optimality tolerance for the problem.Solve method.

> setSimInitGuess
Set the flag that determines whether to use a simulation for the initial guess of the
states within each phase or not.

> setUseHessian
falcon.Problem/setUseHessian is a function. obj = setUseHessian(obj, useHes-
sian)

> showCostFunctionValues
Extracts the values of the Mayer cost functions and prints them to the console.

> Simulate
Integrate the optimized trajectory using standard matlab solvers. The result will
be a cell array containing all the simulated states for the phases.

> SingleCallOptiFunc
Calls the function used to perform the numerical optimization.

5.3 falcon.Problem 35

> Solve
Solve the problem.

> ToStruct
Create a struct from this problem.

> UnBake
UnBake the problem. Make it editable again.

Constructor falcon.Problem

Creates a new FALCON.m problem ready to be used to solve an optimal control problem.
Keywords: Constructor Problem

- Syntax -

1 obj = Problem(name)

- Inputs -
name The name of the problem as a string.

- Name Value -
UseHessian Use the analytic Hessian to solve this problem (if available). (default:

false)

Method addNewControlCost falcon.Problem

Keywords: none

Method addNewLinearPointCost falcon.Problem

Add a linear point cost function of the form sum[i] (w[i]’ * (v[i] - v0[i])) with a
vector of variables v (including States, Controls, Parameters and Outputs in arbitrary
order), offset vector v0 and weight vector w; the subscript i represents a sample index.
Note: If the function is applied to multiple samples and v includes parameters, these
are replicated to all samples. For example, given v = [p] with a parameter p, constant
weights w[i] = w and offsets v0[i] = v0 = [p0] and N samples, the result is N * w * (p
- p0).

Keywords: none

- Syntax -

1 problem.addNewLinearPointCost(variables)
2 problem.addNewLinearPointCost(variables, Phase)
3 problem.addNewLinearPointCost(variables, Phase, NormalizedTime)
4 problem.addNewLinearPointCost(..., ’Name’, Value)

36 5 PROBLEM STRUCTURE USED IN FALCON.M

Method addNewMayerCost falcon.Problem

Creates a new PointFunction and adds it to the list of Mayer cost functions of the prob-
lem.

Keywords: Problem Cost Mayer

- Syntax -

1 obj.addNewMayerCost(FunctionHandle)
2 obj.addNewMayerCost(FunctionHandle, Cost)
3 obj.addNewMayerCost(FunctionHandle, Cost, Phase1, NormalizedTime1)
4 obj.addNewMayerCost(FunctionHandle, Cost, Phase1, NormalizedTime1,

Phase2, NormalizedTime2)
5 obj.addNewMayerCost(FunctionHandle, Cost, ..., PhaseN, NormalizedTimeN)

- Inputs -
FunctionHandle The function handle to the function used to calculate this path con-

straint. For more information on the function handle see falcon.PointFunction
or falcon.PointConstraintBuilder. If not specified via a point constraint builder
file, the function handle must fulfill the following header convention (if in doubt,
please let Falcon.m create the function interface for you): Cost = FunctionHan-
dle(outputs, states, controls, parameters); Cost: a scalar cost value outputs: col-
umn vector of outputs, if the model has some (otherwise this input is omitted)
states: column vector of states controls: column vector of controls, if the model
has some (otherwise this input is omitted) parameters: column vector of parame-
ters, that were set by setParameters method (otherwise the input is omitted)

Cost The Cost object defining the name of the output.

Phase.. The phases where the data for this PointConstraint should be taken from.

NormalizedTime.. The normalized time points where the data should be taken.
Each input phase requires its own normalized time vector.

Method addNewOutputCost falcon.Problem

Keywords: none

Method addNewParameterCost falcon.Problem

Keywords: none

Method addNewPhase falcon.Problem

Creates a new phase, adds it to the list of phases of this problem and returns a handle
to it.

Keywords: Problem Phase

5.3 falcon.Problem 37

- Syntax -
1 obj.addNewPhase(ModelHandle, States, NormalizedTime, StartTime,

FinalTime)

- Inputs -
ModelHandle The function handle to the simulation model.

States The falcon.State objects used in this phase.

NormalizedTime The normalized time spacing of this phase.

StartTime The start time of this phase in realtime. Input must either be a positive
scalar (time is fixed) or an falcon.Parameter

FinalTime The final time of this phase in realtime. Input must either be a positive
scalar (time is fixed) or an falcon.Parameter

Method addNewPointConstraint falcon.Problem

Creates a new PointFunction object and adds it to the problem.
Keywords: Problem Point Constraint

- Syntax -
1 obj.addNewPointConstraint(FunctionHandle, Constraints, Phase1,

NormalizedTime1)
2 obj.addNewPointConstraint(FunctionHandle, Constraints, Phase1,

NormalizedTime1, Phase2, NormalizedTime2)
3 obj.addNewPointConstraint(FunctionHandle, Constraints, ..., PhaseN,

NormalizedTimeN)

- Inputs -
FunctionHandle The function handle to the function used to calculate this point

constraint. For more information on the function handle see falcon.PointFunction
or falcon.PointConstraintBuilder. If not specified via a point constraint builder
file, the function handle must fulfill the following header convention (if in doubt,
please let Falcon.m create the function interface for you): constraints = Func-
tionHandle(outputs, states, controls, parameters); constraints: column vector of
constraints outputs: column vector of outputs, if the model has some (otherwise
this input is omitted) states: column vector of states controls: column vector of
controls, if the model has some (otherwise this input is omitted) parameters: col-
umn vector of parameters, that were set by setParameters method (otherwise the
input is omitted)

Constraints The Constraint objects defining the name, boundaries, scaling and off-
set of the output

Phase.. The phases where the data for this PointConstraint should be taken from.

NormalizedTime.. The normalized time points where the data should be taken.
Each input phase requires its own normalized time vector.

38 5 PROBLEM STRUCTURE USED IN FALCON.M

Method addNewQuadraticPointCost falcon.Problem

Add a quadratic point cost function of the form sum[i] ((v[i] - v0[i])’ * W[i] * (v[i] -
v0[i])) with a vector of variables v (including States, Controls, Parameters and Outputs
in arbitrary order), offset vector v0 and weight matrix W; the subscript i represents a
sample index. The function accepts inputs from a single phase only. However, multiple
samples from this phase may be used. Note: If the function is applied to multiple
samples and v includes parameters, these are replicated to all samples. For example,
given v = [p] with a parameter p, constant weights W[i] = W and offsets v0[i] = v0 =
[p0] and N samples, the result is N * (p - p0)’ * W * (p - p0).

Keywords: none

- Syntax -

1 problem.addNewQuadraticPointCost(variables)
2 problem.addNewQuadraticPointCost(variables, Phase)
3 problem.addNewQuadraticPointCost(variables, Phase, NormalizedTime)
4 problem.addNewQuadraticPointCost(..., ’Name’, Value)

Method addNewStateCost falcon.Problem

Keywords: none

Method addPostProcessingStep falcon.Problem

Add a post processing step to be performed after the problem has been solved. The
post-processing is always applied to the full time interval and to all phases. Thus, it
must support element-wise operations.

Keywords: Problem Post Process Add

- Syntax -

1 obj.addPostProcessingStep(func, inargscell, calcValues)
2

3 >func: Function handle (anonymous and standard) with multiple
4 inputs and a output(s) calculating the post-processing
5 value(s).
6 >inargscell: Cell array containing the function input
7 arguments (in correct order) that are required to calculate
8 the post-processing value. All falcon objects can be used as
9 inputs including already calculated post-processed values.

10 >calcValues: A falcon.Value object containg the name of the
11 post-processed value as saved in the PostProcessedGrid of
12 the phase.

Method addProblemExtension falcon.Problem

Keywords: Problem Extension

5.3 falcon.Problem 39

- Syntax -

1 obj.addProblemExtension(probExt)

- Inputs -
probExt Problem extension instance

Method Bake falcon.Problem

Bake the problem in order to prepare it for solving. The method needs to be called
before the problem can be solved by any numeric solver. If you try to solve the problem
with default settings using the method Problem.Solve() it will be baked automatically.
Altering a problem after baking it is not possible. If you still want to change it, use
Problem.UnBake().

Keywords: Problem Bake

- Syntax -

1 obj.Bake()

Method byName falcon.Problem

The method returns all entries from the object array ’obj’ as fields of a struct, with the
object Name as field name. In case there are duplicate names, the output struct contains
object arrays.

Keywords: OVC byName

- Syntax -

1 [map] = obj.byName()

Method byNameUnique falcon.Problem

The method returns all entries from the object array ’obj’ as fields of a struct, with the
object Name as field name. Throws an error in case there are any duplicate names.

Keywords: OVC byName Unique

- Syntax -

1 [map] = obj.byNameUnique()

Method CheckGradient falcon.Problem

Calculates the analytic derivative of the problem and compares it to finite differences.
Keywords: Problem Checks Gradient

- Syntax -

1 [g, gnum] = obj.CheckGradient(’Name’, Value)

- Name Value -
z The optimization parameter vector to be used for the analysis. (default: zInitial)

40 5 PROBLEM STRUCTURE USED IN FALCON.M

Delta_Z The stepsize used for the finite differences. (default: sqrt(eps))

Tolerance The tolerance for comparison of the numeric and the analytic values. (de-
fault: 1e-4)

Range The range in z to be checked. (default: The whole z)

Visualize A boolean specifying if the result of the computation should be displayed.
(default: true)

doRandomize Flag that allows a randomization of the optimization parameter vector
considering bounds and magnitude (default: false).

noSamples Number of samples to randomly check the matrix with respect to finite
differences (default: 1).

- Outputs -
G The sparse analytic gradient matrix of the overall problem. For multiple samples the

last value is returned.

Gnum The sparse numeric gradient matrix of the overall problem. For multiple samples
the last value is returned.

gradientIsCorrect Flag indicating that, if true, the matrix checks were successful
for the respective samples.

Method CheckScaling falcon.Problem

This function checks the scaling of the z and the F vectors as well as the gradient matrix
G. A wellformed optimization problem yields in the fact that all optimization param-
eters, constraints, cost function as well as the entries of G have the same magnitude
(desired is abs(entry) < 10).

Keywords: Problem Checks Scaling

- Syntax -

1 [F, G, z] = CheckScaling(z, ’Name’, Value, ...)
2 [F, G, z] = CheckScaling(’Name’, Value, ...)

z The optimization parameter vector to be used for the analysis. (default: zOpt if
available, else zInitial)

- Name Value -
zRange Which optimization variables are checked. (default: 1:zLength)

fRange Which constraint values are checked. (default: 1:fLength)

Tolerance The tolerance for marking entry values as too large (default: 10).

5.3 falcon.Problem 41

SolverTol The solver tolerance for checking violated constraints (default: 1e-5).

MinTolerance The tolerance for marking entry values as too small (default: 1e-1).

doMinBound Flag for visualizing small entries to the matrix (default: false).

Method clearPostProcessing falcon.Problem

Keywords: none

Method ConnectAllPhases falcon.Problem

Creates constraints that link each phase in the problem to the next phase in the problem.
The ordering is equal to the ordering in which the phases have been added to the
problem.

Keywords: Problem Phase Connect All

- Syntax -

1 obj.ConnectAllPhases()

Method ConnectPhases falcon.Problem

Creates constraints that link two phases to each other. In the converged result, the states
at the end of the left phase will be equal to those at the beginning of the right phase.

Keywords: Problem Phase Connect

- Syntax -

1 obj.ConnectPhases(prevPhase, nextPhase)

- Inputs -
leftPhase The left one of the two falcon.core.Phase objects to be connected. The last

state of this phase will be forced to be equal to the first one of the right phase.

rightPhase The right one of the two falcon.core.Phase objects to be connected. The
first state of this phase will be forced to be equal to the last one of the left phase.

Method CreateDebugInfo falcon.Problem

Creates Information not required for optimization but mainly for debugging of the code.
Information created includes zNames and fNames.

Keywords: Debugging Problem Information

42 5 PROBLEM STRUCTURE USED IN FALCON.M

- Syntax -
1 obj.CreateDebugInfo()

Method FastBake falcon.Problem

This method provides a fast bake method after an initial bake has already been con-
ducted. Within this function no new indices are calculated but only the optimization
parameter vector is adapted with regard to state and control guess as well as initial and
final boundaries. No problem changes can be done in this function!

Keywords: gPC Problem Fast Bake

- Syntax -
1 obj.FastBake()

- Name Value -
initGuessCtrlsCell A cell containing the initial guess for the control of each phase.

If a phase should not be changed leave the cell empty.

initGuessStateCell A cell containing the initial guess for the state of each phase.

InitialBoundariesCell A cell containing the initial boundary condition of each
phase.

InitialBoundariesCell A cell containing the final boundary condition of each
phase.

UpdateInitialGuess A logical to either overwrite (true) or keep (false) the initial
guess

Method getParametersByName falcon.Problem

Returns the parameters corresponding to the given names. If a parameter is not found,
an exception is thrown. If a name is ambiguous, the first match is returned.

Keywords: none

- Syntax -
1 [parameters, locations] = problem.getParametersByName(names)

- Inputs -
names cellstr

parameters falcon.Parameter array

locations index array referring to problem.Parameters

Method getTimeSeries falcon.Problem

Takes the states, controls, outputs, state derivatives and postprocessed time histories of
all phases in the problem and creates Matlab TimeSeries objects from them.

Keywords: Debugging Problem Time Series

5.3 falcon.Problem 43

- Syntax -

1 [statesTS, controlTS, outputTS, statesdotTS, postprocessedTS] =
obj.getTimeSeries()

- Outputs -
statesTS A TimeSeries object holding all states in the problem.

controlTS A TimeSeries object holding all controls in the problem.

outputTS A TimeSeries object holding all outputs in the problem.

statesdotTS A TimeSeries object holding all state derivatives in the problem.

postprocessedTS A TimeSeries object holding all postprocessed data in the prob-
lem.

Method OpenPlotGUI falcon.Problem

Creates a new instance of the plot GUI using the given problem. In the plot GUI, the
user can select all available time histories in the problem and create plots from them.

Keywords: Problem GUI Open

- Syntax -

1 falcon.Problem.OpenPlotGUI(problem);
2 falcon.Problem.OpenPlotGUI(structure);

- Inputs -
problem The falcon.Problem or a struct created from a problem (Using the ToStruct()

method) to be plotted.

Method PlotGUI falcon.Problem

Creates a new instance of the plot GUI using the current problem. In the plot GUI, the
user can select all available time histories in the problem and create plots from them.

Keywords: Problem GUI

- Syntax -

1 obj.PlotGUI();

Method setCostOffset falcon.Problem

Keywords: none

Method setCostScaling falcon.Problem

Sets the numeric value as the numeric scaling value for the overall cost function.
Keywords: Problem Cost Scaling

44 5 PROBLEM STRUCTURE USED IN FALCON.M

- Syntax -

1 obj.setCostScaling(CostScaling)

- Inputs -
CostScaling A numeric value used for scaling the cost function.

Method setDiscretizationMethod falcon.Problem

Sets the given discretization method as the discretization method used to solve this
optimal control problem.

Keywords: Problem Discretization Method, Solver Discretization Method,

- Syntax -

1 obj.setDiscretizationMethod(DiscretizationMethod)

- Inputs -
DiscretizationMethod A handle to a child class of falcon.discretization.DiscretizationMethod

containing all the functions required to discretize an optimal control problem
before solving it. The usable classes shipped with falcon can be found in fal-
con.discretization.

Method setMajorFeasTol falcon.Problem

Set the major feasibility tolerance for the method problem.Solve. Value will be assigned
there to the automatically created solver object.

Keywords: Solver Tolerance Feasibility

- Syntax -

1 obj.setMajorFeasTol(MajorFeasTolVal)

- Name Value -
MajorFeasTolVal Numeric value of the tolerance.

Method setMajorIterLimit falcon.Problem

Set the major iteration limit for the method problem.Solve. Value will be assigned there
to the automatically created solver object.

Keywords: Solver Limit Iteration

- Syntax -

1 obj.setMajorIterLimit(MajorIterLimitVal)

- Name Value -
MajorIterLimitVal Numeric value of the limit.

5.3 falcon.Problem 45

Method setMajorOptTol falcon.Problem

Set the major optimality tolerance for the method problem.Solve. Value will be assigned
there to the automatically created solver object.

Keywords: Solver Tolerance Optimality

- Syntax -

1 obj.setMajorOptTol(MajorOptTolVal)

- Name Value -
MajorOptTolVal Numeric value of the tolerance.

Method setSimInitGuess falcon.Problem

Sets the boolean value of the simulation flag for the initial guess.
Keywords: Problem Simulation Flag

- Syntax -

1 obj.setSimInitGuess(SimInitGuessFlag)

- Inputs -
SimInitGuessFlag Boolean determining whether to use a simulation for the initial

guess (true) or not (false). (defaul: false)

Method setUseHessian falcon.Problem

Keywords: none

Method showCostFunctionValues falcon.Problem

Show all Mayer cost functions in the console.
Keywords: Debugging Problem Cost Values

- Syntax -

1 obj.showCostFunctionValues()

Method Simulate falcon.Problem

Simulate the system with controls and initial state of the optimization.
Keywords: Problem Simulation

46 5 PROBLEM STRUCTURE USED IN FALCON.M

- Syntax -

1 [states,outputs,simTime,statesDot] = obj.Simulate()
2 [states,outputs,simTime,statesDot] = obj.Simulate(init_states)
3 [states,outputs,simTime,statesDot] =

obj.Simulate(init_states,control_history)
4 [states,outputs,simTime,statesDot] =

obj.Simulate(init_states,control_history,ode_solver)
5 [states,outputs,simTime,statesDot] =

obj.Simulate(init_states,control_history,ode_solver,ode_options)
6 [states,outputs,simTime,statesDot] =

obj.Simulate(init_states,control_history,ode_solver,ode_options,UseRealTime)
7 [states,outputs,simTime,statesDot] =

obj.Simulate(init_states,control_history,ode_solver,ode_options,UseRealTime,SplitIntervals)
8 [states,outputs,simTime,statesDot] =

obj.Simulate(init_states,control_history,ode_solver,ode_options,UseRealTime,SplitIntervals,UseODETimeStep)
9 [states,outputs,simTime,statesDot] =

obj.Simulate(init_states,control_history,ode_solver,ode_options,UseRealTime,SplitIntervals,UseODETimeStep,UseBackwardInt)
10 [states,outputs,simTime,statesDot] =

obj.Simulate(init_states,control_history,ode_solver,ode_options,UseRealTime,SplitIntervals,UseODETimeStep,UseBackwardInt,DoVisualization)
11 [states,outputs,simTime,statesDot] =

obj.Simulate(init_states,control_history,ode_solver,ode_options,UseRealTime,SplitIntervals,UseODETimeStep,UseBackwardInt,DoVisualization,DoSensitivity)

- Name Value -
init_states The initial state vector for the split intervals. If backward integration is

used the final values. Default are values from the current state grid.

control_history The control history to be used for the simulation. Default is the
interpolated control grid.

ode_solver Solver type that should be used for the integration (default: ode45).
Specified as a string.

ode_options Specify an ode options struct used for the ode solver. As default the
standard ode settings are used.

UseRealTime Use the real, i.e. physical, time for the simulation instead of the non-
dimensional time tau (default: true).

SplitIntervals Number of split intervals, i.e. intervals that split the integration
domain. This generally makes the integration more stable.

UseODETimeStep Flag that specifies whether to use the internal ode time step for the
measurements or the time steps from the optimization. Result might be helpful to
determine the required number of collocation steps (default: false).

UseBackwardInt Flag that specifies whether to use the backward or forward integra-
tion in time (default: false).

DoVisualization Flag to visualize the results (default: false)

5.3 falcon.Problem 47

- Outputs -
states Simulated states.

outputs Simulated outputs.

simTime The time grid the integration is carried out.

statesDot The state derivatives.

Method SingleCallOptiFunc falcon.Problem

The problem is solved by iteratively improving the solution. This method calls the
function used in this iteration once an calculates the current constraint values and the
current gradient. In case the problem was solved, this method uses the optimal solution,
otherwise it uses the initial guess.

Keywords: Problem Opti Func, Discretization Opti Func

- Syntax -

1 [F, G] = obj.SingleCallOptiFunc()

z The optimization parameter vector. If not specified the initial guess or, if available,
the optimal results us used.

- Outputs -
F The cost and constraint vector in the evaluated point. The first entry holds the cost

function.

G The sparse Jacobian df/dz of the problem.

Method Solve falcon.Problem

Solve the problem numerically either using the default solver and the default settings
or using the given numeric solver.

Keywords: Problem Solve, Solver Solve

- Syntax -

1 [z_opt, F_opt, status, lambda, mu, zl, zu] = obj.Solve()
2 [z_opt, F_opt, status, lambda, mu, zl, zu] = obj.Solve(Solver)

Method ToStruct falcon.Problem

Extracts all relevant information from this problem and stores it in the returned struct.
Keywords: Debugging Problem

48 5 PROBLEM STRUCTURE USED IN FALCON.M

- Syntax -

1 strc = obj.ToStruct()
2 strc = obj.ToStruct(’Name’, Value)

- Name Value -
DebugData Setting this option to true enables debug data in the ToStruct method.

Method UnBake falcon.Problem

Make a problem editable again, that was already baked. This is especially usefull when
solving similar problems again and again.

Keywords: Problem UnBake

- Syntax -

1 obj.UnBake()

5.4 falcon.core.Phase

Parent Classes: falcon.core.Handle, falcon.core.HasToStruct, falcon.core.HasProblem

Properties

+ PhaseNumber (read-only, Default = 0)
The number of this phase. Unique phase identifier.

+ StateGrid (read-only)
State grid of this phase (falcon.core.Grid)

+ ControlGrids (read-only)
Array of Control grids of this phase (falcon.core.Grid)

+ DefectGrid (read-only)
The grid holding the state defects in this phase

+ CostateGrid (read-only)
The grid holding the costates

+ PathConstraintFunctions (read-only)
Path Functions store fPathfunction which limit for instance a state over the whole
phase

+ LagrangeCostFunctions (read-only)
Lagrange cost functions store fPathfunction which are added to the overall vost of
this problem

+ Model (read-only)
Model calculate the dynamics either by using

5.4 falcon.core.Phase 49

+ StartTime (read-only)
The real start time of this phase (The normalized time always runs from 0 to 1,
while the realtime runs from StartTime to FinalTime).

+ FinalTime (read-only)
The real final time of this phase (The normalized time always runs from 0 to 1,
while the realtime runs from StartTime to FinalTime).

+ InitialBoundaries (read-only)
The initial boundary values for the states of this phase

+ FinalBoundaries (read-only)
The final boundary values for the states of this phase

+ ParameterInitialBoundaries (read-only)
Parameter boundaries

+ ParameterFinalBoundaries (read-only)
falcon.core.Phase/ParameterFinalBoundaries is a property.

+ InterpolatedControlGrid (read-only)
The interpolated values of the control grids w.r.t the state grid normalized time

+ PostProcessedGrid (read-only)
The grid holding the post processed values of this phase.

+ SimulatedStateGrid (read-only)
The grid holding the simulated states (post-processed) of this phase.

+ ConnectedNextPhase (read-only)
Next Phase to which the phase defect is constructed

+ ConnectedStates (read-only)
Connected states, for which phase defect is constructed

+ zIndexStart (read-only)
Start z index of phase

+ fIndexStart (read-only)
Start f index of phase

+ PhaseExtensions
falcon.core.Phase/PhaseExtensions is a property.

+ ControlDataTypes (Dependent)
(dependent) All combined DataTypes of the controls

+ RealTime (Dependent)
(dependent) Real time vector of the grid

50 5 PROBLEM STRUCTURE USED IN FALCON.M

+ Duration (Dependent)
falcon.core.Phase/Duration is a property.

+ DurationSensitivity (Dependent)
<sensitive>

+ RealTimeSensitivity (Dependent)
<sensitive>

Methods

> addNewControlGrid
Adds a new control grid to the list of control grids of this phase.

> addNewLagrangeCost
Adds a new Lagrange cost function to the list of cost functions of this phase.

> addNewLinearPathCost
Minimize (default) or maximize the integral of a linear function.

> addNewParameterFinalBoundaries
Sets parameter dependent initial boundary conditions for the states of this phase

> addNewParameterInitialBoundaries
Sets parameter dependent initial boundary conditions for the states of this phase

> addNewPathConstraint
Adds a new path function to the list of path functions of this phase.

> addNewQuadraticPathCost
Minimize (default) or maximize the integral of a quadratic form.

> addPhaseExtension

> addPostProcessingStep
Add a post processing step to be performed after the problem has been solved.

> ConnectToNextPhase

> resampleStates
Resample the StateGrid and associated grids.

> setDurationLimit
Sets the limits of the duration of this Phase.

> setFinalBoundaries
Sets the final boundary conditions for the states of this phase.

5.4 falcon.core.Phase 51

> setFinalTime
Sets the FinalTime of this grid.

> setInitialBoundaries
Sets the initial boundary conditions for the states of this phase.

> setStartTime
Sets the StartTime of this grid.

> SimulatePhase
Integrate the optimized trajectory using standard matlab solvers. The result will
be a forward simulation of phase.

> ToStruct
Create a struct of the falcon.core.Phase-object.

Method addNewControlGrid falcon.core.Phase

Creates a new control grid of type falcon.core.Grid based on the given normalized time
and the given controls, adds it to the list of control grids of this phase and returns it. If
no normalized time is specified the state-grid discretization is used.

Keywords: Phase Grid Control

- Syntax -

1 controlGrid = obj.addNewControlGrid(controls)
2 controlGrid = obj.addNewControlGrid(controls, normalizedTime)

- Inputs -
controls A vector of falcon.Control objects defining the controls to be used on this

control grid.

normalizedTime The points in normalized time where the control values are defined.
If no normalized time is specified the state-grid discretization is used.

- Outputs -
controlGrid Control-grid object.

Method addNewLagrangeCost falcon.core.Phase

Creates a new Lagrange cost function based on the provided function handle, con-
straints and normalized time. The function is added to the list of path functions of this
phase and is returned. If no normalized time is specified the state-grid discretization is
used.

Keywords: Phase Lagrange Cost, Path Function Phase Cost

52 5 PROBLEM STRUCTURE USED IN FALCON.M

- Syntax -

1 lagrangeFunction = obj.addNewLagrangeCost(functionHandle, cost)
2 lagrangeFunction = obj.addNewLagrangeCost(functionHandle, cost,

normalizedTime)

- Inputs -
functionHandle The function handle to the function used to calculate this Lagrange

cost. For more information on the function handle see see falcon.PathFunction or
falcon.PathConstraintBuilder. If not specified via a path constraint builder file, the
function handle must fulfill the following header convention (if in doubt, please let
Falcon.m create the function interface for you): cost = functionHandle(outputs,
states, controls, parameters); cost: a scalar cost value outputs: column vector of
outputs, if the model has some (otherwise this input is omitted) states: column
vector of states controls: column vector of controls, if the model has some (oth-
erwise this input is omitted) parameters: column vector of parameters, that were
set by setParameters method (otherwise the input is omitted)

cost A vector of falcon.Cost objects defining the output of this cost function. The size
of the vector has to fit the outputs of the function.

normalizedTime The points in normalized time to evaluate the path function on. If
no normalized time is specified the StateGrid discretization is used.

- Outputs -
lagrangeFunction Lagrange-function object.

Method addNewLinearPathCost falcon.core.Phase

Add a linear path cost function of the form integral(w’ * (v - v0)) with a vector
of variables v (including States, Controls, Parameters and Outputs in arbitrary order),
offset vector v0 and weight vector w.

Keywords: Phase Cost Linear

- Syntax -

1 phase.addNewLinearPathCost(variables)
2 phase.addNewLinearPathCost(variables, NormalizedTime)
3 phase.addNewLinearPathCost(..., ’Name’, Value)

- Inputs -
variables The vector of variables v.

NormalizedTime The integration grid. Defaults to the state discretization.

- Name Value -
Weight The weights corresponding to v, specified either as a column vector w of con-

stant weights, or a matrix with varying weights, W = [w[1] ... w[N]]. Defaults to
one.

5.4 falcon.core.Phase 53

Offset The offsets corresponding to v, specified either as a column vector v0 with
constant offsets, or a matrix with varying offsets, V0 = [v0[1] ... v0[N]]. Defaults
to zero.

Cost A falcon.Cost object. Default autogenerated.

- Outputs -
cost falcon.Cost

pathFunction falcon.core.PathFunction

Method addNewParameterFinalBoundaries falcon.core.Phase

Set final boundary conditions for the states such that they match the values of the
parameters.

Keywords: none

- Syntax -

1 obj.addNewParameterInitialBoundaries(falcon.State, falcon.Parameter)

- Inputs -
States A vector of falcon.State objects containing the all states the parameterized

boundary conditions should apply to

Method addNewParameterInitialBoundaries falcon.core.Phase

Set final boundary conditions for the states such that they match the values of the
parameters.

Keywords: none

- Syntax -

1 obj.addNewParameterInitialBoundaries(falcon.State, falcon.Parameter)

- Inputs -
States A vector of falcon.State objects containing the all states the parameterized

boundary conditions should apply to

Method addNewPathConstraint falcon.core.Phase

Creates a new path function based on the provided function handle, constraints and
normalized time. The function is added to the list of path functions of this phase and is
returned. If no normalized time is specified the state-grid discretization is used.

Keywords: Phase Path Constraint, Path Function Phase Constraint

54 5 PROBLEM STRUCTURE USED IN FALCON.M

- Syntax -

1 pathFunction = obj.addNewPathConstraint(functionHandle, constraints)
2 pathFunction = obj.addNewPathConstraint(functionHandle, constraints,

normalizedTime)

- Inputs -
functionHandle The function handle to the function used to calculate this path con-

straint. For more information on the function handle see falcon.PathFunction or
falcon.PathConstraintBuilder. If not specified via a path constraint builder file,
the function handle must fulfill the following header convention (if in doubt,
please let Falcon.m create the function interface for you): constraints = func-
tionHandle(outputs, states, controls, parameters); constraints: column vector of
constraints outputs: column vector of outputs, if the model has some (otherwise
this input is omitted) states: column vector of states controls: column vector of
controls, if the model has some (otherwise this input is omitted) parameters: col-
umn vector of parameters, that were set by setParameters method (otherwise the
input is omitted)

constraints A vector of falcon.Constraint objects defining the boundaries, the scal-
ing etc. of the values calculated by this path function. The size of the vector has
to fit the outputs of the function.

normalizedTime The points in normalized time to evaluate the path function on. If
no normalized time is specified the StateGrid discretization is used.

- Outputs -
pathFunction Path-function object.

Method addNewQuadraticPathCost falcon.core.Phase

Add a quadratic path cost function of the form 0.5 * integral((v - v0)’ * W * (v - v0)
) with a vector of variables v (including States, Controls, Parameters and Outputs in
arbitrary order), offset vector v0 and weight matrix W.

Keywords: Phase Cost Quadratic

- Syntax -

1 phase.addNewQuadraticPathCost(variables)
2 phase.addNewQuadraticPathCost(variables, NormalizedTime)
3 phase.addNewQuadraticPathCost(..., ’Name’, Value)

- Inputs -
variables The vector of variables v.

NormalizedTime The integration grid. Defaults to the state discretization.

5.4 falcon.core.Phase 55

- Name Value -
WeightMatrix The weights corresponding to v, specified either as a matrix W with

W[i] = W for all i, or a 3D array with varying weights, W = cat(3, W[1], ...
W[N]). Defaults to identity.

Offset The offsets corresponding to v, specified either as a column vector v0 with
v0[i] = v0 for all i, or a matrix with varying offsets, V0 = [v0[1] ... v0[N]].
Defaults to zero.

Cost A falcon.Cost object. Default autogenerated.

- Outputs -
cost falcon.Cost

pathFunction falcon.core.PathFunction

Method addPhaseExtension falcon.core.Phase

Keywords: Phase Extension

Method addPostProcessingStep falcon.core.Phase

Add a post processing step to be performed after the problem has been solved. The
post-processing is always applied to the full time interval and may differ for different
phases. Thus, it must support element-wise operations.

Keywords: Phase Post Process Add

- Syntax -
1 obj.addPostProcessingStep(func, inargscell, calcValues)
2

3 >func: Function handle (anonymous and standard) with multiple
4 inputs and a single output calculating the post-processing
5 value.
6 >inargscell: Cell array containing the function input
7 arguments (in correct order) that are required to calculate
8 the post-processing value. All falcon objects can be used as
9 inputs including already calculated post-processed values.

10 >calcValues: A falcon.Value object containg the name of the
11 post-processed value as saved in the PostProcessedGrid of
12 the phase.

Method ConnectToNextPhase falcon.core.Phase

Keywords: Phase Connect

Method resampleStates falcon.core.Phase

Updates the normalized time vector of all state-associated grids in the Phase. Grid
values are interpolated.

Keywords: Phase StateGrid Resample

56 5 PROBLEM STRUCTURE USED IN FALCON.M

- Syntax -
1 phase.resampleStates(newNormalizedTime)

Method setDurationLimit falcon.core.Phase

Set the scalar, real valued limits of the duration of this phase. Please note that the lower
bound of the phase duration must be smaller than the upper bound.

Keywords: Phase Duration Limit

- Syntax -
1 obj.setDurationLimit(DurationLowerBound, DurationUpperBound)
2 obj.setDurationLimit(DurationLowerBound, DurationUpperBound, ’Name’,

Value)

- Inputs -
DurationLowerBound Lower bound of the duration of this phase.

DurationUpperBound Upper bound of the duration of this phase.

- Name Value -
Offset The offset of the phase duration value. (default: 0)

Scaling The scaling of the phase duration value. (default: Scaling of the final time -
parameter of this phase)

Method setFinalBoundaries falcon.core.Phase

Sets the final boundary conditions of the states to the provided values. There are several
possibilities to set the boundary conditions for the states of this phase depending of the
number and type of function arguments used for the call. Please note that this function
may be called more than once. Each time this function is called the newly specified
values are overwritten but conserving already set values!

Keywords: Phase Boundaries Final

- Syntax -
1 obj.setFinalBoundaries(EqualityBoundaries)
2 obj.setFinalBoundaries(LowerBounds, UpperBounds)
3 obj.setFinalBoundaries(falcon.State, EqualityBoundary)
4 obj.setFinalBoundaries(falcon.State, LowerBounds, UpperBounds)

Case I One function argument - numeric, real valued column vector with number of
entries equal to the number of states in the phase. The lower and upper bounds
are set to the same value specified in the column vector.

Case II Two function arguments - The first argument is an column vector of fal-
con.State objects. The second argument is a numeric, real valued column vector
with the number of entries equal to the number of falcon.State objects in the first
argument. The lower and upper bounds for the falcon.State objects are set to the
same value specified in the column vector.

5.4 falcon.core.Phase 57

Case III Two function arguments - The first argument is a numeric, real valued col-
umn vector specifying the lower bounds of the final boundary condition. The
second argument is a numeric, real valued column vector specifying the upper
bounds, respectively. Please note that the number of entries in the column vector
for the lower and upper bounds have to be equal to the number of states in this
phase. The boundaries are set according to the entries in the two column vectors.

Case IV Three function arguments - The first argument is an column vector of fal-
con.State objects. The second argument is a numeric, real valued column vector
with the number of entries equal to the number of falcon.State objects in the first
argument and specifies the lower bounds for these states. The third argument is a
numeric, real valued column vector with the number of entries equal to the num-
ber of falcon.State objects in the first argument and specifies the upper bounds for
these states.

- Inputs -
EqualityBoundaries A vector of the same size as the state vector for this phase

that contains the values for the final boundary conditon. Lower and upper bounds
are set to the same value specified in the array. If the vector contains inf or - inf
values, these are ignored and replaced by the regular boundaries for the states.

LowerBounds A vector of the same size as the state vector for this pase that contains
the lower boundaries for the final state values. If the vector contains -inf values,
these are ignored and replaced by the regular boundaries for the states.

UpperBounds A vector of the same size as the state vector for this phase that contains
the upper boundaries for the final state values. If the vector contains inf values,
these are ignored and replaced by the regular boundaries for the states.

Method setFinalTime falcon.core.Phase

Uses the given FinalTime as the final time of this grid in real time.
Keywords: Phase Duration Final Time

- Syntax -

1 obj.setFinalTime(finalTime)

- Inputs -
finalTime Either an falcon.Parameter or a scalar numeric value used as the final time

for this grid.

Method setInitialBoundaries falcon.core.Phase

Sets the initial boundary conditions of the states to the provided values. There are
several possibilities to set the boundary conditions for the states of this phase depending
of the number and type of function arguments used for the call. Please note that this

58 5 PROBLEM STRUCTURE USED IN FALCON.M

function may be called more than once. Each time this function is called the newly
specified values are overwritten but conserving already set values!

Keywords: Phase Boundaries Initial

- Syntax -
1 obj.setInitialBoundaries(EqualityBoundaries)
2 obj.setInitialBoundaries(LowerBounds, UpperBounds)
3 obj.setInitialBoundaries(falcon.State, EqualityBoundary)
4 obj.setInitialBoundaries(falcon.State, LowerBounds, UpperBounds)

Case I One function argument - numeric, real valued column vector with number of
entries equal to the number of states in the phase. The lower and upper bounds
are set to the same value specified in the column vector.

Case II Two function arguments - The first argument is an column vector of fal-
con.State objects. The second argument is a numeric, real valued column vector
with the number of entries equal to the number of falcon.State objects in the first
argument. The lower and upper bounds for the falcon.State objects are set to the
same value specified in the column vector.

Case III Two function arguments - The first argument is a numeric, real valued col-
umn vector specifying the lower bounds of the final boundary condition. The
second argument is a numeric, real valued column vector specifying the upper
bounds, respectively. Please note that the number of entries in the column vector
for the lower and upper bounds have to be equal to the number of states in this
phase. The boundaries are set according to the entries in the two column vectors.

Case IV Three function arguments - The first argument is an column vector of fal-
con.State objects. The second argument is a numeric, real valued column vector
with the number of entries equal to the number of falcon.State objects in the first
argument and specifies the lower bounds for these states. The third argument is a
numeric, real valued column vector with the number of entries equal to the num-
ber of falcon.State objects in the first argument and specifies the upper bounds for
these states.

- Inputs -
EqualityBoundaries A vector of the same size as the state vector for this phase that

contains the values for the initial boundary conditon. Lower and upper bounds
are set to the same value specified in the array. If the vector contains inf or - inf
values, these are ignored and replaced by the regular boundaries for the states.

LowerBounds A vector of the same size as the state vector for this pase that contains
the lower boundaries for the final state values. If the vector contains -inf values,
these are ignored and replaced by the regular boundaries for the states.

UpperBounds A vector of the same size as the state vector for this phase that contains
the upper boundaries for the final state values. If the vector contains inf values,
these are ignored and replaced by the regular boundaries for the states.

5.4 falcon.core.Phase 59

Method setStartTime falcon.core.Phase

Uses the given StartTime as the start time of this grid in real time.
Keywords: Phase Duration Start Time

- Syntax -
1 obj.setStartTime(StartTime)

- Inputs -
StartTime Either an falcon.Parameter or a scalar numeric value used as the initial

time (start time) for this grid.

Method SimulatePhase falcon.core.Phase

Simulate the system with controls and initial state of the optimization.
Keywords: Phase Simulate, Problem Simulate Phase

- Syntax -
1 [states,outputs,time,statesDot] = obj.SimulatePhase()
2 [states,outputs,time,statesDot] = obj.SimulatePhase(init_states)
3 [states,outputs,time,statesDot] =

obj.SimulatePhase(init_states,control_history)
4 [states,outputs,time,statesDot] =

obj.SimulatePhase(init_states,control_history,ode_solver)
5 [states,outputs,time,statesDot] =

obj.SimulatePhase(init_states,control_history,ode_solver,ode_options)
6 [states,outputs,time,statesDot] =

obj.SimulatePhase(init_states,control_history,ode_solver,ode_options,UseRealTime)
7 [states,outputs,time,statesDot] =

obj.SimulatePhase(init_states,control_history,ode_solver,ode_options,UseRealTime,SplitIntervals)
8 [states,outputs,time,statesDot] =

obj.SimulatePhase(init_states,control_history,ode_solver,ode_options,UseRealTime,SplitIntervals,UseODETimeStep)
9 [states,outputs,time,statesDot] =

obj.SimulatePhase(init_states,control_history,ode_solver,ode_options,UseRealTime,SplitIntervals,UseODETimeStep,UseBackwardInt)
10 [states,outputs,time,statesDot] =

obj.SimulatePhase(init_states,control_history,ode_solver,ode_options,UseRealTime,SplitIntervals,UseODETimeStep,UseBackwardInt,DoVisualization)
11 [states,outputs,time,statesDot] =

obj.SimulatePhase(init_states,control_history,ode_solver,ode_options,UseRealTime,SplitIntervals,UseODETimeStep,UseBackwardInt,DoVisualization,DoSensitivity)

- Name Value -
init_states The initial state vector for the split intervals. If backward integration is

used the final values. Default are values from the current state grid.

control_history The control history to be used for the simulation. Default is the
interpolated control grid.

ode_solver Solver type that should be used for the integration (default: ode45).
Specified as a string.

ode_options Specify an ode options struct used for the ode solver. As default the
standard ode settings are used.

60 5 PROBLEM STRUCTURE USED IN FALCON.M

UseRealTime Use the real, i.e. physical, time for the simulation instead of the non-
dimensional time tau (default: true).

SplitIntervals Number of split intervals, i.e. intervals that split the integration
domain. This generally makes the integration more stable.

UseODETimeStep Flag that specifies whether to use the internal ode time step for the
measurements or the time steps from the optimization. Result might be helpful to
determine the required number of collocation steps (default: false).

UseBackwardInt Flag that specifies whether to use the backward or forward integra-
tion in time (default: false).

DoVisualization Flag to visualize the results (default: false)

- Outputs -
states Simulated states with the initial condition and controls from the object.

outputs Simulated outputs with the initial condition and controls from the object.

time The time grid the integration is carried out.

statesDot Simulated state derivatives with the initial condition and controls from
the object.

Method ToStruct falcon.core.Phase

This metod creates a struct of the falcon.core.Phase-object including all the necessary
information of the phase.

Keywords: Debugging Phase

- Syntax -

1 strc = obj.ToStruct()

- Inputs -
obj falcon.core.Phase-object to be transformed in a struct.

- Name Value -
DebugData Setting this option to true enables debug data in the ToStruct method.

- Outputs -
strc struct containing the inherent properties of the falcon.core.Phase-object

5.5 falcon.core.Grid

Parent Classes: falcon.core.HasProblem, falcon.core.HasToStruct, falcon.core.Handle

5.5 falcon.core.Grid 61

Properties

+ GRID_INTERPOLATION_LINEAR (Constant, read-only, Default = linear)
Constant used to set the linear grid interpolation method

+ GRID_INTERPOLATION_PREVIOUS (Constant, read-only, Default = previous)
Constant used to set the previous grid interpolation method

+ Phase (read-only)
The phase this falcon.core.Grid belongs to

+ DataTypes (read-only)
Array to hold the datatypes of this grid

+ Type (read-only, Default = Base)
The type of this grid. Valid types are listed in the field ValidTypes

+ Values (read-only)
The time history values stored in the grid

+ Sensitivity (read-only)
The time history sensitivities stored in the grid

+ IntegratorSensitivity (read-only)
The time history integrator sensitivities stored in the grid

+ NormalizedTime (read-only)
The normalized time points of this grid

+ Index (read-only)
The indices of this grid in either z or f

+ FBCIndex (read-only)
The indices of the final boundary condition for the multiple shooting in the f vector

+ Jacobian (read-only)
Jacobian Gradient of the Grid

+ Hessian (read-only)
Hessian Gradient of the Grid

+ InterpolationGradient (read-only)
The gradient of the interpolation scheme of this grid

+ InterpolationMethod (read-only, Default = linear)
The interpolation method for this grid

+ RelevantIndices (read-only)
The indices that are neither fixed nor disabled. RelevantIndices holds the indices
of the states as numerical values (not logical).

62 5 PROBLEM STRUCTURE USED IN FALCON.M

+ StateGridIndices (read-only)
The indices of the points in time in this grid with respect to the stategrid of the
respective phase

+ ResamplingEnabled (read-only)
Allow the grid to be resampled in-place?

+ UpperBounds (Dependent)
(dependent) The upper bounds of the values

+ LowerBounds (Dependent)
(dependent) The lower bounds of the values

+ Scaling (Dependent)
(dependent) The scaling of the values

+ Offset (Dependent)
(dependent) The offsets of the values

+ Name (Dependent)
(dependent) The names for the values

+ NameStr (Dependent)
(dependent) The names for the values as a string

Methods

> copyDistributedAttributesFrom
Copy distributed variable attributes from another grid

> findVariables
Find variables in the grid.

> getDistributedLowerBounds
Get lower bounds varying over normalized time.

> getDistributedOffsets
Get offsets varying over normalized time.

> getDistributedScalings
Get scalings varying over normalized time.

> getDistributedUpperBounds
Get upper bounds varying over normalized time.

> getInterpolatedValues
Method handing back the interpolated values of this grid

> guessValuesFromBounds
falcon.core.Grid/guessValuesFromBounds is a function. [values] = guessValues-
FromBounds(self, normalizedTime)

5.5 falcon.core.Grid 63

> resample
Resample the grid.

> setDistributedLowerBounds
Set lower bounds varying over normalized time.

> setDistributedOffsets
Set offsets varying over normalized time.

> setDistributedScalings
Set scalings varying over normalized time.

> setDistributedUpperBounds
Set upper bounds varying over normalized time.

> setholdSpecificValues
Set the values of this grid.

> setInterpolationMethod
Set the interpolation method for the control grid

> setOnlySpecificValues
Set the values of this grid.

> setSpecificValues
Set the values of this grid.

> setValues
Set the values of this grid.

> ToStruct
Create a struct of the falcon.core.Grid-object.

Method copyDistributedAttributesFrom falcon.core.Grid

Copy the variable attributes LowerBound, UpperBound, Scaling, Offset (distributed over
normalized time) from another grid, interpolating onto the current normalized time
grid. Variables are matched by name.

Keywords: none

- Syntax -

1 grid.copyDistributedAttributesFrom(self, other)

Method findVariables falcon.core.Grid

This returns the indices of the given variables in the grid. If any given variable is not
found, an exception is thrown.

Keywords: none

64 5 PROBLEM STRUCTURE USED IN FALCON.M

- Syntax -

1 [location] = grid.findVariables(variables)

- Inputs -
variables variable name(s) or falcon.State/falcon.Control/... array; entries are al-

ways matched by name

- Outputs -
location numeric index vector

Method getDistributedLowerBounds falcon.core.Grid

Extract the lower bounds depending on normalized time from the grid. The returned
values are NaN for those samples where no distributed value has been specified, i.e.,
where the global variable attributes are used.

Keywords: none

- Syntax -

1 [values] = grid.getDistributedLowerBounds()
2 [values] = grid.getDistributedLowerBounds(variables)

- Inputs -
variables optional variable name(s) or falcon.State/falcon.Control/... array; entries

are matched by name

- Outputs -
values distributed values (one row per variable)

Method getDistributedOffsets falcon.core.Grid

Extract the offsets depending on normalized time from the grid. The returned values
are NaN for those samples where no distributed value has been specified, i.e., where
the global variable attributes are used.

Keywords: none

- Syntax -

1 [values] = grid.getDistributedOffsets()
2 [values] = grid.getDistributedOffsets(variables)

- Inputs -
variables optional variable name(s) or falcon.State/falcon.Control/... array; entries

are matched by name

- Outputs -
values distributed values (one row per variable)

5.5 falcon.core.Grid 65

Method getDistributedScalings falcon.core.Grid

Extract the scalings depending on normalized time from the grid. The returned values
are NaN for those samples where no distributed value has been specified, i.e., where
the global variable attributes are used.

Keywords: none

- Syntax -

1 [values] = grid.getDistributedScalings()
2 [values] = grid.getDistributedScalings(variables)

- Inputs -
variables optional variable name(s) or falcon.State/falcon.Control/... array; entries

are matched by name

- Outputs -
values distributed values (one row per variable)

Method getDistributedUpperBounds falcon.core.Grid

Extract the upper bounds depending on normalized time from the grid. The returned
values are NaN for those samples where no distributed value has been specified, i.e.,
where the global variable attributes are used.

Keywords: none

- Syntax -

1 [values] = grid.getDistributedUpperBounds()
2 [values] = grid.getDistributedUpperBounds(variables)

- Inputs -
variables optional variable name(s) or falcon.State/falcon.Control/... array; entries

are matched by name

- Outputs -
values distributed values (one row per variable)

Method getInterpolatedValues falcon.core.Grid

Interpolates and returns these interpolated values of the falcon.core.Grid object.
Keywords: Grid Interpolation Values

- Syntax -

1 InterpValues = getInterpolatedValues(obj)

- Outputs -
InterpValues Numeric array of the interpolated values for this grid.

66 5 PROBLEM STRUCTURE USED IN FALCON.M

Method guessValuesFromBounds falcon.core.Grid

Keywords: none

Method resample falcon.core.Grid

Updates the normalized time vector and interpolates the values according to the grid’s
InterpolationMethod.

Keywords: Grid Resample

- Syntax -

1 grid.resample(newNormalizedTime)

Method setDistributedLowerBounds falcon.core.Grid

Set lower bounds that vary over normalized time. These bounds override the bounds
specified globally for the given variables. The values are interpolated linearly and affect
only the given normalized time interval.

Keywords: none

- Syntax -

1 grid.setDistributedLowerBounds(variables, normalizedTime, values)

- Inputs -
variables variable name(s) or falcon.State/falcon.Control/... array; entries are matched

by name

normalizedTime vector of normalized time samples for the specified bounds

values bound values (one row per variable)

Method setDistributedOffsets falcon.core.Grid

Set offsets that vary over normalized time. These offsets override the offsets specified
globally for the given variables. The values are interpolated linearly and affect only the
given normalized time interval.

Keywords: none

- Syntax -

1 grid.setDistributedScalings(variables, normalizedTime, values)

- Inputs -
variables variable name(s) or falcon.State/falcon.Control/... array; entries are matched

by name

normalizedTime vector of normalized time samples for the specified scalings

values offsets values (one row per variable)

5.5 falcon.core.Grid 67

Method setDistributedScalings falcon.core.Grid

Set scalings that vary over normalized time. These scalings override the scalings speci-
fied globally for the given variables. The values are interpolated linearly and affect only
the given normalized time interval.

Keywords: none

- Syntax -

1 grid.setDistributedScalings(variables, normalizedTime, values)

- Inputs -
variables variable name(s) or falcon.State/falcon.Control/... array; entries are matched

by name

normalizedTime vector of normalized time samples for the specified scalings

values scaling values (one row per variable)

Method setDistributedUpperBounds falcon.core.Grid

Set upper bounds that vary over normalized time. These bounds override the bounds
specified globally for the given variables. The values are interpolated linearly and affect
only the given normalized time interval.

Keywords: none

- Syntax -

1 grid.setDistributedUpperBounds(variables, normalizedTime, values)

- Inputs -
variables variable name(s) or falcon.State/falcon.Control/... array; entries are matched

by name

normalizedTime vector of normalized time samples for the specified bounds

values bound values (one row per variable)

Method setholdSpecificValues falcon.core.Grid

Used to set the initial guess for specific states. Additionally, specific states can also be set
on hold and are not changed. The values are interpolated to the values needed in this
grid using linear interpolation with extrapolation turned on. All non-specified values
are set to NaN and post-processed in the phase.checkConsistency function, where they
are set to the default values

Keywords: Grid Set and Hold Specific Values

68 5 PROBLEM STRUCTURE USED IN FALCON.M

- Syntax -

1 obj.setholdSpecificValues(setStatesControls,holdStatesControls,ConstantValues)
2 obj.setholdSpecificValues(setStatesControls,holdStatesControls,InitialValues,

FinalValues)
3 obj.setholdSpecificValues(setStatesControls,holdStatesControls,NormalizedTime,

Values)
4 obj.setholdSpecificValues(setStatesControls,holdStatesControls,RealTime,

Values, ’Realtime’, true)

- Inputs -
setStatesControls falcon state/control object containing the states/controls to be

set (can also be empty)

holdStatesControls falcon state/control object containing the states/controls to
be hold (i.e. not set to NaN) (can also be empty)

ConstantValues One vector of values copied to all points in time.

InitialValues The value of this grid for normalized time tau=0. Needs to have the
exact same size as DataTypes.

FinalValues The value of this grid for normalized time tau=1. Needs to have the
exact same size as DataTypes.

NormalizedTime A list of points in normalized time for which the values are given.

Values An array of size [DataTypes, length(time)] holding the values to be stored in
this grid.

- Name Value -
Realtime Switch to change the time vector from normalized time to real time (de-

fault: false).

Method setInterpolationMethod falcon.core.Grid

Used to set the interpolation method
Keywords: Grid Interpolation Method

- Syntax -

1 setInterpolationMethod(obj, method)

- Inputs -
method The interpolation methods supported by FALCON.m are ’linear’ and ’previous’.

Alternatively, the class constants GRID_INTERPOLATION_LINEAR and GRID_INTERPOLATION_PREVIOUS
may be used.

5.5 falcon.core.Grid 69

Method setOnlySpecificValues falcon.core.Grid

Used to set the initial guess for specific states. The values are interpolated to the values
needed in this grid using linear interpolation with extrapolation turned on. All non-
specified values remain unchanged.

Keywords: Grid Set Only Specific Values

- Syntax -
1 obj.setOnlySpecificValues(setVariables, ConstantValues)
2 obj.setOnlySpecificValues(setVariables, InitialValues, FinalValues)
3 obj.setOnlySpecificValues(setVariables, NormalizedTime, Values)
4 obj.setOnlySpecificValues(setVariables, RealTime, Values, ’Realtime’,

true)

- Inputs -
setStatesControls falcon state/control object containing the states/controls to be

set

ConstantValues One vector of values copied to all points in time.

InitialValues The value of this grid for normalized time tau=0. Needs to have the
exact same size as DataTypes.

FinalValues The value of this grid for normalized time tau=1. Needs to have the
exact same size as DataTypes.

NormalizedTime A list of points in normalized time for which the values are given.

Values An array of size [numel(setStatesControls), length(time)] holding the values
to be stored in this grid.

- Name Value -
Realtime Switch to change the time vector from normalized time to real time (de-

fault: false).

Method setSpecificValues falcon.core.Grid

Used to set the initial guess for specific states. The values are interpolated to the val-
ues needed in this grid using linear interpolation with extrapolation turned on. All
non-specified values are set to NaN and post-processed in the phase.checkConsistency
function, where they are set to the default values

Keywords: Grid Set Specific Values

- Syntax -
1 obj.setSpecificValues(setStatesControls,ConstantValues)
2 obj.setSpecificValues(setStatesControls,InitialValues, FinalValues)
3 obj.setSpecificValues(setStatesControls,NormalizedTime, Values)
4 obj.setSpecificValues(setStatesControls,RealTime, Values, ’Realtime’,

true)

70 5 PROBLEM STRUCTURE USED IN FALCON.M

- Inputs -
setStatesControls falcon state/control object containing the states/controls to be

set

ConstantValues One vector of values copied to all points in time.

InitialValues The value of this grid for normalized time tau=0. Needs to have the
exact same size as DataTypes.

FinalValues The value of this grid for normalized time tau=1. Needs to have the
exact same size as DataTypes.

NormalizedTime A list of points in normalized time for which the values are given.

Values An array of size [DataTypes, length(time)] holding the values to be stored in
this grid.

- Name Value -
Realtime Switch to change the time vector from normalized time to real time (de-

fault: false).

Method setValues falcon.core.Grid

Used to set the initial guess. The values are interpolated to the values needed in this
grid using linear interpolation with extrapolation turned on.

Keywords: Grid Set Values

- Syntax -

1 obj.setValues(ConstantValues)
2 obj.setValues(InitialValues, FinalValues)
3 obj.setValues(NormalizedTime, Values)
4 obj.setValues(RealTime, Values, ’Realtime’, true)

- Inputs -
ConstantValues One vector of values copied to all points in time.

InitialValues The value of this grid for normalized time tau=0. Needs to have the
exact same size as DataTypes.

FinalValues The value of this grid for normalized time tau=1. Needs to have the
exact same size as DataTypes.

NormalizedTime A list of points in normalized time for which the values are given.

Values An array of size [DataTypes, length(time)] holding the values to be stored in
this grid.

5.6 falcon.core.Model 71

- Name Value -
Realtime Switch to change the time vector from normalized time to real time (de-

fault: false).

Method ToStruct falcon.core.Grid

This metod creates a struct of the falcon.core.Grid-object including all the necessary
information of the grid.

Keywords: Debugging Grid

- Syntax -

1 strc = obj.ToStruct()

- Inputs -
obj falcon.core.Grid-object to be transformed in a struct.

- Name Value -
DebugData Setting this option to true enables debug data in the ToStruct method.

- Outputs -
strc struct containing the inherent properties of the falcon.core.Grid-object

5.6 falcon.core.Model

Parent Classes: falcon.core.Handle, falcon.core.HasToStruct, falcon.core.HasProblem

Properties

+ Phase (read-only)
The phase this falcon.core.Model belongs to

+ StateDotGrid (read-only)
The grid for the state dot values

+ ModelOutputGrid (read-only)
The grid for the model outputs

+ SimulatedStateDotGrid (read-only)
The grid for the simulated state dot values

+ SimulatedOutputGrid (read-only)
The grid for the simulated model outputs

+ ModelHandle (read-only)
Model calculate the dynamics either by using Model.Simulate() for shooting meth-
ods or Model.Evaluate() for Collocation methods

72 5 PROBLEM STRUCTURE USED IN FALCON.M

+ ModelInfoStruct (read-only)
The struct holding all information about the model function.

+ ModelParameters (read-only)
The parameters used in the simulation of the model

+ ModelConstants (read-only)
The constants used for the simulation of the model

+ ShootingIndices (read-only)
The indices of the states to be integrated using the refined multiple shooting grid.

+ SlowIndices (read-only)
The indices of the states to be integrated using the coarse collocation grid.

+ real_out_avail (read-only)
Flag that determines whether we have a real, physical output of the system

+ PathConstraintFunction (read-only)
PathFunction object generated for the output path constraints

+ hasOutputs (Dependent)
Specifies whether the Model has Outputs

Methods

> addModelConstants
Add the given numbers to the list of constants used in the simulation model.

> overwriteConstants
Overwrites the given numbers in the list of constants used in this simulation
model.

> setModelOutputs
Set the given falcon.Outputs as the outputs of the model.

> setModelParameters
Set the given parameters as the parameters used in the simulation model.

> ToStruct
Create a struct of the falcon.core.Model-object.

Method addModelConstants falcon.core.Model

Adds the given array of constants to the list of constants relevant for the simulation
model.

Keywords: Model Constants

5.6 falcon.core.Model 73

- Syntax -
1 obj.addModelConstants(Constant1, Constant2, ..)

- Inputs -
Constant1 An array of constant numbers used in this PathFunctionfor the first con-

stant.

Constant2 An array of constant numbers used in this PathFunctionfor the second
constant.

INFO Note that the third matrix dimension for constants with MultipleTimeEvaluation
set to true contains the evolution over the time steps, i.e., constants of size [n,m]
for each discretization step in the phase.

Method overwriteConstants falcon.core.Model

Overwrites the given cell of constants in the list of constants relevant for this simulation
model.

Keywords: Model Overwrite Constants

- Syntax -
1 obj.overwriteConstants(Constant,...)

- Inputs -
ConstantsCell A cell of constant numbers used in this PathFunction.

ConstantsIdx An array of the size of constants cell containing the indices of the
constants that should be overwritten.

Method setModelOutputs falcon.core.Model

Sets the given array of falcon.Output objects as the outputs additional outputs for the
model. In case there are finite limits defined for the outputs, the outputs are automati-
cally limited to the respective values.

Keywords: Model Outputs

- Syntax -
1 obj.setModelOutputs(Outputs)

- Inputs -
Outputs An array of falcon.Output objects used to store the outputs of the model.

Method setModelParameters falcon.core.Model

Sets the given array of parameters as the parameters relevant for the simulation model.
All parameters given here will be used as the thrid input to the simulation model dy-
namics.

Keywords: Model Parameters

74 5 PROBLEM STRUCTURE USED IN FALCON.M

- Syntax -

1 obj.setModelParameters(Parameters)

- Inputs -
Parameters An array of falcon.Parameter objects used in the simulation of the dy-

namic model.

Method ToStruct falcon.core.Model

This metod creates a struct of the falcon.core.Model-object including all the necessary
information of the Model.

Keywords: Debugging Model

- Syntax -

1 strc = obj.ToStruct()

- Inputs -
obj falcon.core.Model-object to be transformed in a struct.

- Name Value -
DebugData Setting this option to true enables debug data in the ToStruct method.

- Outputs -
strc struct containing the inherent properties of the falcon.core.Model-object

5.7 falcon.State

Parent Classes: falcon.core.OVC, falcon.core.HasProblem

Properties

+ Scaling (read-only, Default = 1)
Scaling Parameters initialized with 1. The offset and scaling is assigned in the
following way:

x_scaled = (x_unscaled - Offset) * Scaling

+ Offset (read-only, Default = 0)
Offset parameter which is initialized with 0. The offset and scaling is assigned in
the following way:

x_scaled = (x_unscaled - Offset) * Scaling

+ Name (read-only)
Name of object.

5.7 falcon.State 75

+ LowerBound (read-only, Default = -Inf)
Lower bound of the falcon.core.OVC value. It is initialized with minus infinity.
Scaling and Offset are applied to the LowerBound as well.

+ UpperBound (read-only, Default = Inf)
Upper bound of the falcon.core.OVC value. It is initialized with plus infinity. Scal-
ing and Offset are applied to the UpperBound as well.

Methods

State (Constructor)
Constructor for falcon.State object.

> byName
Get a struct for name based access to the object array.

> byNameUnique
Get a struct for name based access to the object array, allowing only unique names.

> eq
== (EQ) Test handle equality. Handles are equal if they are handles for the same
object. H1 == H2 performs element-wise comparisons between handle arrays H1
and H2. H1 and H2 must be of the same dimensions unless one is a scalar. The
result is a logical array of the same dimensions, where each element is an element-
wise equality result. If one of H1 or H2 is scalar, scalar expansion is performed and
the result will match the dimensions of the array that is not scalar. TF = EQ(H1,
H2) stores the result in a logical array of the same dimensions.

> extractValuesFrom
Extract values array from Problem or Phase.

> extractValuesStructFrom
Extract values struct from Problem or Phase.

> find
Find elements matching a regex.

> findFirst
Find the first element matching a regex.

> ne
= (NE) Not equal relation for handles. Handles are equal if they are handles
for the same object and are unequal otherwise. H1 = H2 performs element-
wise comparisons between handle arrays H1 and H2. H1 and H2 must be of
the same dimensions unless one is a scalar. The result is a logical array of the
same dimensions, where each element is an element-wise equality result. If one
of H1 or H2 is scalar, scalar expansion is performed and the result will match the
dimensions of the array that is not scalar. TF = NE(H1, H2) stores the result in a
logical array of the same dimensions.

76 5 PROBLEM STRUCTURE USED IN FALCON.M

> relaxBounds
Relax the lower and upper bound.

> relaxRange
Relax the lower and upper bound.

> setBounds
Set the lower and upper bound.

> setLowerBound
Set the lower bound of this object.

> setOffset
Set the offset of this object.

> setRange
Set the lower and upper bound using a vector argument.

> setScaling
Set the scaling of this object.

> setUpperBound
Set the upper bound of this object.

> tightenBounds
Tighten the lower and upper bound.

> tightenRange
Tighten the lower and upper bound.

> ToStruct
Create a struct from this object.

Constructor falcon.State

Constructs a new falcon.State object and returns it. Each state needs to have at least a
valid name.

Keywords: Constructor State

- Syntax -

1 obj = falcon.State(name)
2 obj = falcon.State(name, lowerBound)
3 obj = falcon.State(name, lowerBound, upperBound)
4 obj = falcon.State(name, lowerBound, upperBound, scaling)
5 obj = falcon.State(name, lowerBound, upperBound, scaling, offset)
6 obj = falcon.State(name, ’Name’, Value)

- Inputs -
lowerBound The lower boundary for this state. this value needs to be bigger than the

upper boudn (default: -inf)

5.7 falcon.State 77

upperBound The upper boundary for this state. (default: inf)

scaling The scaling factor for this state. (default: 1)

offset The offset value for this state. (default: 0)

Method byName falcon.State

The method returns all entries from the object array ’obj’ as fields of a struct, with the
object Name as field name. In case there are duplicate names, the output struct contains
object arrays.

Keywords: OVC byName

- Syntax -
1 [map] = obj.byName()

Method byNameUnique falcon.State

The method returns all entries from the object array ’obj’ as fields of a struct, with the
object Name as field name. Throws an error in case there are any duplicate names.

Keywords: OVC byName Unique

- Syntax -
1 [map] = obj.byNameUnique()

Method eq falcon.State

Keywords: none

Method extractValuesFrom falcon.State

Extract the values of the given states from a Problem or Phase.
Keywords: none

- Syntax -
1 values = stateArray.extractValuesFrom(source)

- Inputs -
source a falcon.Problem or falcon.Phase

- Outputs -
values an array of state values; rows: states, columns: samples

Method extractValuesStructFrom falcon.State

Extract the values of the given states from a Problem or Phase, returning a struct for
name-based access.

Keywords: none

78 5 PROBLEM STRUCTURE USED IN FALCON.M

- Syntax -

1 valuesStruct = stateArray.extractValuesStructFrom(source)

- Inputs -
source a falcon.Problem or falcon.Phase

- Outputs -
valuesStruct a struct; fields: state names, values: samples (row vectors)

Method find falcon.State

Extract object array elements whose Name attributes match the given pattern, as deter-
mined by the regexp function. The returned array is empty if no element matches.

Keywords: none

- Syntax -

1 elements = array.find(pattern)

- Inputs -
pattern see documentation for regexp

- Outputs -
elements the entries of the object array whose names match

Method findFirst falcon.State

Extract the first element from the array whose Name attribute matches the given pat-
tern, as determined by the regexp function. If no element matches, an exception is
thrown.

Keywords: none

- Syntax -

1 element = array.findFirst(pattern)

- Inputs -
pattern see documentation for regexp

- Outputs -
element the first matching element

Method ne falcon.State

Keywords: none

5.7 falcon.State 79

Method relaxBounds falcon.State

For current bounds [a, b] and given bounds [c, d], set the bounds to [min(a, c), max(b,
d)].

Keywords: none

- Syntax -

1 obj.relaxBounds(lowerBound, upperBound)

- Inputs -
lowerBound scalar double

upperBound scalar double

Method relaxRange falcon.State

For current bounds [a, b] and given bounds [c, d], set the bounds to [min(a, c), max(b,
d)].

Keywords: none

- Syntax -

1 obj.relaxRange(range)

- Inputs -
range two-element double vector

Method setBounds falcon.State

Set the lower and upper bound.
Keywords: none

- Syntax -

1 obj.setBounds(lowerBound, upperBound)

- Inputs -
lowerBound scalar double

upperBound scalar double

Method setLowerBound falcon.State

Set the lower bound of this object. The input must be a real, scalar scalar and smaller
than the upper bound.

Keywords: OVC Bound Lower

80 5 PROBLEM STRUCTURE USED IN FALCON.M

- Syntax -

1 obj.setLowerBound(lowerBound)

- Inputs -
lowerBound Lower bound of this object.

Method setOffset falcon.State

Set the offset of this object. Please note that the input must be a real, scalar value.
Keywords: OVC Offset

- Syntax -

1 obj.setOffset(offset)

- Inputs -
offset Offset of this object.

Method setRange falcon.State

Set the lower and upper bound.
Keywords: none

- Syntax -

1 obj.setRange(range)

- Inputs -
range a two-element double vector

Method setScaling falcon.State

The input must be a real positive scalar value and should scale the value of this object
to a range between -1 and 1.

Keywords: OVC Scaling

- Syntax -

1 obj.setScaling(scaling)

- Inputs -
scaling Scaling of the this object.

Method setUpperBound falcon.State

Set the upper bound of this object. The input must be a real, scalar value and bigger
than the lower bound.

Keywords: OVC Bound Upper

5.7 falcon.State 81

- Syntax -

1 obj.setUpperBound(upperBound)

- Inputs -
upperBound Upper bound of this object.

Method tightenBounds falcon.State

For current bounds [a, b] and given bounds [c, d], set the bounds to [max(a, c), min(b,
d)].

Keywords: none

- Syntax -

1 obj.tightenBounds(lowerBound, upperBound)

- Inputs -
lowerBound scalar double

upperBound scalar double

Method tightenRange falcon.State

For current bounds [a, b] and given bounds [c, d], set the bounds to [max(a, c), min(b,
d)].

Keywords: none

- Syntax -

1 obj.tightenRange(range)

- Inputs -
range two-element double vector

Method ToStruct falcon.State

This metod creates a struct of this object including the fields: Name, LowerBound,
UpperBound, Scaling and Offset.

Keywords: Debugging OVC

- Syntax -

1 strc = obj.ToStruct()

- Name Value -
DebugData Setting this option to true enables debug data in the ToStruct method.

- Outputs -
strc struct containing the inherent properties of this object.

82 5 PROBLEM STRUCTURE USED IN FALCON.M

5.8 falcon.Control

Parent Classes: falcon.core.OVC, falcon.core.HasProblem, falcon.core.HasFixed, falcon.core.HasSensitive

Properties

+ Scaling (read-only, Default = 1)
Scaling Parameters initialized with 1. The offset and scaling is assigned in the
following way:

x_scaled = (x_unscaled - Offset) * Scaling

+ Offset (read-only, Default = 0)
Offset parameter which is initialized with 0. The offset and scaling is assigned in
the following way:

x_scaled = (x_unscaled - Offset) * Scaling

+ Name (read-only)
Name of object.

+ LowerBound (read-only, Default = -Inf)
Lower bound of the falcon.core.OVC value. It is initialized with minus infinity.
Scaling and Offset are applied to the LowerBound as well.

+ UpperBound (read-only, Default = Inf)
Upper bound of the falcon.core.OVC value. It is initialized with plus infinity. Scal-
ing and Offset are applied to the UpperBound as well.

+ isFixed (read-only)
Whether this value is fixed or not.

+ isSensitive (read-only)
Whether this value is uncertain or not.

Methods

Control (Constructor)
Constructor for falcon.Control object. Each control needs to have at least a valid
name.

> byName
Get a struct for name based access to the object array.

> byNameUnique
Get a struct for name based access to the object array, allowing only unique names.

5.8 falcon.Control 83

> eq
== (EQ) Test handle equality. Handles are equal if they are handles for the same
object. H1 == H2 performs element-wise comparisons between handle arrays H1
and H2. H1 and H2 must be of the same dimensions unless one is a scalar. The
result is a logical array of the same dimensions, where each element is an element-
wise equality result. If one of H1 or H2 is scalar, scalar expansion is performed and
the result will match the dimensions of the array that is not scalar. TF = EQ(H1,
H2) stores the result in a logical array of the same dimensions.

> extractValuesFrom
Extract values array from Problem or Phase.

> extractValuesStructFrom
Extract values struct from Problem or Phase.

> find
Find elements matching a regex.

> findFirst
Find the first element matching a regex.

> ne
= (NE) Not equal relation for handles. Handles are equal if they are handles
for the same object and are unequal otherwise. H1 = H2 performs element-
wise comparisons between handle arrays H1 and H2. H1 and H2 must be of
the same dimensions unless one is a scalar. The result is a logical array of the
same dimensions, where each element is an element-wise equality result. If one
of H1 or H2 is scalar, scalar expansion is performed and the result will match the
dimensions of the array that is not scalar. TF = NE(H1, H2) stores the result in a
logical array of the same dimensions.

> relaxBounds
Relax the lower and upper bound.

> relaxRange
Relax the lower and upper bound.

> setBounds
Set the lower and upper bound.

> setFixed
Sets the isFixed property of this object. Fixed objects will not be optimized.

> setLowerBound
Set the lower bound of this object.

> setOffset
Set the offset of this object.

84 5 PROBLEM STRUCTURE USED IN FALCON.M

> setRange
Set the lower and upper bound using a vector argument.

> setScaling
Set the scaling of this object.

> setSensitive
Sets the isSensitive property of this object. Sensitive objects will be analysed by a
Fiacco sensitivity analysis.

> setUpperBound
Set the upper bound of this object.

> tightenBounds
Tighten the lower and upper bound.

> tightenRange
Tighten the lower and upper bound.

> ToStruct
Create a struct of the falcon.core.Control-object.

Constructor falcon.Control

Keywords: Constructor Control

- Syntax -
1 obj = falcon.Control(Name)
2 obj = falcon.Control(Name, LowerBound)
3 obj = falcon.Control(Name, LowerBound, UpperBound)
4 obj = falcon.Control(Name, LowerBound, UpperBound, Scaling)
5 obj = falcon.Control(Name, LowerBound, UpperBound, Scaling, Offset)
6 obj = falcon.Control(Name, LowerBound, UpperBound, Scaling, Offset,

Fixed)
7 obj = falcon.Control(Name, LowerBound, UpperBound, Scaling, Offset,

Fixed, Sensitive)
8 obj = falcon.Control(Name, ’Name’, Value)

- Inputs -
LowerBound The lower boundary for this control. (default: -inf)

UpperBound The upper boundary for this control. (default: inf)

Scaling The scaling factor for this control. (default: 1)

Offset The offset value for this control. (default: 0)

Fixed true or false, determines whether this control is subject to optimization or not.
(default: false)

Sensitive true or false, determines whether this parameter is used within the sensi-
tivity analysis or not. (default: false)

5.8 falcon.Control 85

Method byName falcon.Control

The method returns all entries from the object array ’obj’ as fields of a struct, with the
object Name as field name. In case there are duplicate names, the output struct contains
object arrays.

Keywords: OVC byName

- Syntax -

1 [map] = obj.byName()

Method byNameUnique falcon.Control

The method returns all entries from the object array ’obj’ as fields of a struct, with the
object Name as field name. Throws an error in case there are any duplicate names.

Keywords: OVC byName Unique

- Syntax -

1 [map] = obj.byNameUnique()

Method eq falcon.Control

Keywords: none

Method extractValuesFrom falcon.Control

Extract the values of the given controls from a Problem or Phase. The interpolated
control grid is used.

Keywords: none

- Syntax -

1 values = controlArray.extractValuesFrom(source)

- Inputs -
source a falcon.Problem or falcon.Phase

- Outputs -
values an array of controls values; rows: states, columns: samples

Method extractValuesStructFrom falcon.Control

Extract the values of the given controls from a Problem or Phase, returning a struct for
name-based access. The interpolated control grid is used.

Keywords: none

86 5 PROBLEM STRUCTURE USED IN FALCON.M

- Syntax -

1 valuesStruct = controlArray.extractValuesStructFrom(source)

- Inputs -
source a falcon.Problem or falcon.Phase

- Outputs -
valuesStruct a struct; fields: control names, values: samples (row vectors)

Method find falcon.Control

Extract object array elements whose Name attributes match the given pattern, as deter-
mined by the regexp function. The returned array is empty if no element matches.

Keywords: none

- Syntax -

1 elements = array.find(pattern)

- Inputs -
pattern see documentation for regexp

- Outputs -
elements the entries of the object array whose names match

Method findFirst falcon.Control

Extract the first element from the array whose Name attribute matches the given pat-
tern, as determined by the regexp function. If no element matches, an exception is
thrown.

Keywords: none

- Syntax -

1 element = array.findFirst(pattern)

- Inputs -
pattern see documentation for regexp

- Outputs -
element the first matching element

Method ne falcon.Control

Keywords: none

5.8 falcon.Control 87

Method relaxBounds falcon.Control

For current bounds [a, b] and given bounds [c, d], set the bounds to [min(a, c), max(b,
d)].

Keywords: none

- Syntax -

1 obj.relaxBounds(lowerBound, upperBound)

- Inputs -
lowerBound scalar double

upperBound scalar double

Method relaxRange falcon.Control

For current bounds [a, b] and given bounds [c, d], set the bounds to [min(a, c), max(b,
d)].

Keywords: none

- Syntax -

1 obj.relaxRange(range)

- Inputs -
range two-element double vector

Method setBounds falcon.Control

Set the lower and upper bound.
Keywords: none

- Syntax -

1 obj.setBounds(lowerBound, upperBound)

- Inputs -
lowerBound scalar double

upperBound scalar double

Method setFixed falcon.Control

Sets if this object can be optimized or not.
Keywords: Flags Fixed

88 5 PROBLEM STRUCTURE USED IN FALCON.M

- Syntax -

1 obj.setFixed(fixed)

- Inputs -
fixed A scalar boolean specifying if the object is fixed or not. Fixed objects are not

subject to optimization.

Method setLowerBound falcon.Control

Set the lower bound of this object. The input must be a real, scalar scalar and smaller
than the upper bound.

Keywords: OVC Bound Lower

- Syntax -

1 obj.setLowerBound(lowerBound)

- Inputs -
lowerBound Lower bound of this object.

Method setOffset falcon.Control

Set the offset of this object. Please note that the input must be a real, scalar value.
Keywords: OVC Offset

- Syntax -

1 obj.setOffset(offset)

- Inputs -
offset Offset of this object.

Method setRange falcon.Control

Set the lower and upper bound.
Keywords: none

- Syntax -

1 obj.setRange(range)

- Inputs -
range a two-element double vector

Method setScaling falcon.Control

The input must be a real positive scalar value and should scale the value of this object
to a range between -1 and 1.

Keywords: OVC Scaling

5.8 falcon.Control 89

- Syntax -

1 obj.setScaling(scaling)

- Inputs -
scaling Scaling of the this object.

Method setSensitive falcon.Control

Sets if this object is sensitive or not.
Keywords: Flags Sensitive

- Syntax -

1 obj.setSensitive(Sensitive)

- Inputs -
Sensitive A scalar boolean specifying if the object is sensitive or not. Sensitive ob-

jects will be subject to a sensitivity analysis via a Fiacco update.

Method setUpperBound falcon.Control

Set the upper bound of this object. The input must be a real, scalar value and bigger
than the lower bound.

Keywords: OVC Bound Upper

- Syntax -

1 obj.setUpperBound(upperBound)

- Inputs -
upperBound Upper bound of this object.

Method tightenBounds falcon.Control

For current bounds [a, b] and given bounds [c, d], set the bounds to [max(a, c), min(b,
d)].

Keywords: none

- Syntax -

1 obj.tightenBounds(lowerBound, upperBound)

- Inputs -
lowerBound scalar double

upperBound scalar double

90 5 PROBLEM STRUCTURE USED IN FALCON.M

Method tightenRange falcon.Control

For current bounds [a, b] and given bounds [c, d], set the bounds to [max(a, c), min(b,
d)].

Keywords: none

- Syntax -

1 obj.tightenRange(range)

- Inputs -
range two-element double vector

Method ToStruct falcon.Control

This metod creates a struct of the falcon.core.Control-object including all the necessary
information of this Control.

Keywords: Debugging Control

- Syntax -

1 strc = obj.ToStruct()

- Name Value -
DebugData Setting this option to true enables debug data in the ToStruct method.

- Outputs -
strc struct containing the inherent properties of the falcon.core.Control-object

5.9 falcon.Parameter

Parent Classes: falcon.core.OVC, falcon.core.HasFixed, falcon.core.HasProblem

Properties

+ Value (read-only, Default = 0)
The current value of this parameter

+ Index (read-only, Default = 0)
Index the index of this parameter in the z-Vector

+ Scaling (read-only, Default = 1)
Scaling Parameters initialized with 1. The offset and scaling is assigned in the
following way:

x_scaled = (x_unscaled - Offset) * Scaling

5.9 falcon.Parameter 91

+ Offset (read-only, Default = 0)
Offset parameter which is initialized with 0. The offset and scaling is assigned in
the following way:

x_scaled = (x_unscaled - Offset) * Scaling

+ Name (read-only)
Name of object.

+ LowerBound (read-only, Default = -Inf)
Lower bound of the falcon.core.OVC value. It is initialized with minus infinity.
Scaling and Offset are applied to the LowerBound as well.

+ UpperBound (read-only, Default = Inf)
Upper bound of the falcon.core.OVC value. It is initialized with plus infinity. Scal-
ing and Offset are applied to the UpperBound as well.

+ isFixed (read-only)
Whether this value is fixed or not.

Methods

Parameter (Constructor)
Constructor for falcon.Parameter object. Each parameter needs to have at

> byName
Get a struct for name based access to the object array.

> byNameUnique
Get a struct for name based access to the object array, allowing only unique names.

> eq
== (EQ) Test handle equality. Handles are equal if they are handles for the same
object. H1 == H2 performs element-wise comparisons between handle arrays H1
and H2. H1 and H2 must be of the same dimensions unless one is a scalar. The
result is a logical array of the same dimensions, where each element is an element-
wise equality result. If one of H1 or H2 is scalar, scalar expansion is performed and
the result will match the dimensions of the array that is not scalar. TF = EQ(H1,
H2) stores the result in a logical array of the same dimensions.

> find
Find elements matching a regex.

> findFirst
Find the first element matching a regex.

> ne
= (NE) Not equal relation for handles. Handles are equal if they are handles
for the same object and are unequal otherwise. H1 = H2 performs element-
wise comparisons between handle arrays H1 and H2. H1 and H2 must be of

92 5 PROBLEM STRUCTURE USED IN FALCON.M

the same dimensions unless one is a scalar. The result is a logical array of the
same dimensions, where each element is an element-wise equality result. If one
of H1 or H2 is scalar, scalar expansion is performed and the result will match the
dimensions of the array that is not scalar. TF = NE(H1, H2) stores the result in a
logical array of the same dimensions.

> relaxBounds
Relax the lower and upper bound.

> relaxRange
Relax the lower and upper bound.

> setBounds
Set the lower and upper bound.

> setFixed
Sets the isFixed property of this object. Fixed objects will not be optimized.

> setLowerBound
Set the lower bound of this object.

> setOffset
Set the offset of this object.

> setRange
Set the lower and upper bound using a vector argument.

> setScaling
Set the scaling of this object.

> setUpperBound
Set the upper bound of this object.

> setValue
Sets the current value of this falcon.Parameter.

> setValueAndBounds
falcon.Parameter/setValueAndBounds is a function. [self] = setValueAndBounds(self,
value, lowerBound, upperBound)

> setValueAndRange
falcon.Parameter/setValueAndRange is a function. [self] = setValueAndRange(self,
value, range)

> tightenBounds
Tighten the lower and upper bound.

> tightenRange
Tighten the lower and upper bound.

> ToStruct
Create a struct from this parameter.

5.9 falcon.Parameter 93

Constructor falcon.Parameter

Keywords: Constructor Parameter

- Syntax -

1 obj = falcon.Parameter(name)
2 obj = falcon.Parameter(name, value)
3 obj = falcon.Parameter(name, value, lowerBound)
4 obj = falcon.Parameter(name, value, lowerBound, upperBound)
5 obj = falcon.Parameter(name, value, lowerBound, upperBound, scaling)
6 obj = falcon.Parameter(name, value, lowerBound, upperBound, scaling,

offset)
7 obj = falcon.Parameter(name, value, lowerBound, upperBound, scaling,

offset, Fixed)
8 obj = falcon.Parameter(name, value, lowerBound, upperBound, scaling,

offset, Fixed, Sensitive)
9 obj = falcon.Parameter(..., ’Name’, Value)

- Inputs -
Value The current (initial) value of this parameter. (default: 0)

LowerBound The lower boundary for this parameter. (default: -inf)

UpperBound The upper boundary for this parameter. (default: inf)

Scaling The scaling factor for this parameter. (default: 1)

Offset The offset value for this parameter. (default: 0)

Fixed true or false, determines whether this parameter is subject to optimization or
not. (default: false)

Sensitive true or false, determines whether this parameter is used within the sensi-
tivity analysis or not. (default: false)

Method byName falcon.Parameter

The method returns all entries from the object array ’obj’ as fields of a struct, with the
object Name as field name. In case there are duplicate names, the output struct contains
object arrays.

Keywords: OVC byName

- Syntax -

1 [map] = obj.byName()

Method byNameUnique falcon.Parameter

The method returns all entries from the object array ’obj’ as fields of a struct, with the
object Name as field name. Throws an error in case there are any duplicate names.

Keywords: OVC byName Unique

94 5 PROBLEM STRUCTURE USED IN FALCON.M

- Syntax -
1 [map] = obj.byNameUnique()

Method eq falcon.Parameter

Keywords: none

Method find falcon.Parameter

Extract object array elements whose Name attributes match the given pattern, as deter-
mined by the regexp function. The returned array is empty if no element matches.

Keywords: none

- Syntax -
1 elements = array.find(pattern)

- Inputs -
pattern see documentation for regexp

- Outputs -
elements the entries of the object array whose names match

Method findFirst falcon.Parameter

Extract the first element from the array whose Name attribute matches the given pat-
tern, as determined by the regexp function. If no element matches, an exception is
thrown.

Keywords: none

- Syntax -
1 element = array.findFirst(pattern)

- Inputs -
pattern see documentation for regexp

- Outputs -
element the first matching element

Method ne falcon.Parameter

Keywords: none

Method relaxBounds falcon.Parameter

For current bounds [a, b] and given bounds [c, d], set the bounds to [min(a, c), max(b,
d)].

Keywords: none

5.9 falcon.Parameter 95

- Syntax -

1 obj.relaxBounds(lowerBound, upperBound)

- Inputs -
lowerBound scalar double

upperBound scalar double

Method relaxRange falcon.Parameter

For current bounds [a, b] and given bounds [c, d], set the bounds to [min(a, c), max(b,
d)].

Keywords: none

- Syntax -

1 obj.relaxRange(range)

- Inputs -
range two-element double vector

Method setBounds falcon.Parameter

Set the lower and upper bound.
Keywords: none

- Syntax -

1 obj.setBounds(lowerBound, upperBound)

- Inputs -
lowerBound scalar double

upperBound scalar double

Method setFixed falcon.Parameter

Sets if this object can be optimized or not.
Keywords: Flags Fixed

- Syntax -

1 obj.setFixed(fixed)

- Inputs -
fixed A scalar boolean specifying if the object is fixed or not. Fixed objects are not

subject to optimization.

96 5 PROBLEM STRUCTURE USED IN FALCON.M

Method setLowerBound falcon.Parameter

Set the lower bound of this object. The input must be a real, scalar scalar and smaller
than the upper bound.

Keywords: OVC Bound Lower

- Syntax -

1 obj.setLowerBound(lowerBound)

- Inputs -
lowerBound Lower bound of this object.

Method setOffset falcon.Parameter

Set the offset of this object. Please note that the input must be a real, scalar value.
Keywords: OVC Offset

- Syntax -

1 obj.setOffset(offset)

- Inputs -
offset Offset of this object.

Method setRange falcon.Parameter

Set the lower and upper bound.
Keywords: none

- Syntax -

1 obj.setRange(range)

- Inputs -
range a two-element double vector

Method setScaling falcon.Parameter

The input must be a real positive scalar value and should scale the value of this object
to a range between -1 and 1.

Keywords: OVC Scaling

- Syntax -

1 obj.setScaling(scaling)

- Inputs -
scaling Scaling of the this object.

5.9 falcon.Parameter 97

Method setUpperBound falcon.Parameter

Set the upper bound of this object. The input must be a real, scalar value and bigger
than the lower bound.

Keywords: OVC Bound Upper

- Syntax -

1 obj.setUpperBound(upperBound)

- Inputs -
upperBound Upper bound of this object.

Method setValue falcon.Parameter

Sets the current value of this parameter to the given value.
Keywords: Parameter Value

- Syntax -

1 obj.setValue(Value)

- Inputs -
Value The numeric value of this parameter. Needs to be scalar.

Method setValueAndBounds falcon.Parameter

Keywords: none

Method setValueAndRange falcon.Parameter

Keywords: none

Method tightenBounds falcon.Parameter

For current bounds [a, b] and given bounds [c, d], set the bounds to [max(a, c), min(b,
d)].

Keywords: none

- Syntax -

1 obj.tightenBounds(lowerBound, upperBound)

- Inputs -
lowerBound scalar double

upperBound scalar double

98 5 PROBLEM STRUCTURE USED IN FALCON.M

Method tightenRange falcon.Parameter

For current bounds [a, b] and given bounds [c, d], set the bounds to [max(a, c), min(b,
d)].

Keywords: none

- Syntax -

1 obj.tightenRange(range)

- Inputs -
range two-element double vector

Method ToStruct falcon.Parameter

Extracts all relevant information from this parameter and stores it in the returned struct.
Keywords: Debugging Parameter

- Syntax -

1 strc = obj.ToStruct()

- Name Value -
DebugData Setting this option to true enables debug data in the ToStruct method.

- Outputs -
strc struct containing the inherent properties of this object.

5.10 falcon.Constraint

Parent Classes: falcon.core.OVC, falcon.core.HasProblem, falcon.core.HasActive

Properties

+ Scaling (read-only, Default = 1)
Scaling Parameters initialized with 1. The offset and scaling is assigned in the
following way:

x_scaled = (x_unscaled - Offset) * Scaling

+ Offset (read-only, Default = 0)
Offset parameter which is initialized with 0. The offset and scaling is assigned in
the following way:

x_scaled = (x_unscaled - Offset) * Scaling

+ Name (read-only)
Name of object.

5.10 falcon.Constraint 99

+ LowerBound (read-only, Default = -Inf)
Lower bound of the falcon.core.OVC value. It is initialized with minus infinity.
Scaling and Offset are applied to the LowerBound as well.

+ UpperBound (read-only, Default = Inf)
Upper bound of the falcon.core.OVC value. It is initialized with plus infinity. Scal-
ing and Offset are applied to the UpperBound as well.

+ isActive (read-only)
Whether this value is active or not.

Methods

Constraint (Constructor)
Constructor for falcon.Constraint object. Each constraint needs to have at least a
valid name.

> ArrayWith (Static)
Create array of falcon.Constraint objects

> byName
Get a struct for name based access to the object array.

> byNameUnique
Get a struct for name based access to the object array, allowing only unique names.

> eq
== (EQ) Test handle equality. Handles are equal if they are handles for the same
object. H1 == H2 performs element-wise comparisons between handle arrays H1
and H2. H1 and H2 must be of the same dimensions unless one is a scalar. The
result is a logical array of the same dimensions, where each element is an element-
wise equality result. If one of H1 or H2 is scalar, scalar expansion is performed and
the result will match the dimensions of the array that is not scalar. TF = EQ(H1,
H2) stores the result in a logical array of the same dimensions.

> find
Find elements matching a regex.

> findFirst
Find the first element matching a regex.

> ne
= (NE) Not equal relation for handles. Handles are equal if they are handles
for the same object and are unequal otherwise. H1 = H2 performs element-
wise comparisons between handle arrays H1 and H2. H1 and H2 must be of
the same dimensions unless one is a scalar. The result is a logical array of the
same dimensions, where each element is an element-wise equality result. If one
of H1 or H2 is scalar, scalar expansion is performed and the result will match the

100 5 PROBLEM STRUCTURE USED IN FALCON.M

dimensions of the array that is not scalar. TF = NE(H1, H2) stores the result in a
logical array of the same dimensions.

> relaxBounds
Relax the lower and upper bound.

> relaxRange
Relax the lower and upper bound.

> setActive
Sets the isActive property of this object.

> setBounds
Set the lower and upper bound.

> setLowerBound
Set the lower bound of this object.

> setOffset
Set the offset of this object.

> setRange
Set the lower and upper bound using a vector argument.

> setScaling
Set the scaling of this object.

> setUpperBound
Set the upper bound of this object.

> tightenBounds
Tighten the lower and upper bound.

> tightenRange
Tighten the lower and upper bound.

> ToStruct
Create a struct from this constraint.

Constructor falcon.Constraint

Keywords: Constructor Constraint

- Syntax -

1 obj = falcon.Constraint(name)
2 obj = falcon.Constraint(name, lowerBound)
3 obj = falcon.Constraint(name, lowerBound, upperBound)
4 obj = falcon.Constraint(name, lowerBound, upperBound, scaling)
5 obj = falcon.Constraint(name, lowerBound, upperBound, scaling, offset)

5.10 falcon.Constraint 101

6 obj = falcon.Constraint(name, lowerBound, upperBound, scaling,
offset, active)

7 obj = falcon.Constraint(name, ’Name’, Value)

- Inputs -
name The name of this constraint object.

lowerBound The lower boundary for this constraint. (default: -inf)

upperBound The upper boundary for this constraint. (default: inf)

scaling The scaling factor for this constraint. (default: 1)

offset The offset value for this constraint. (default: 0)

active true or false, determines whether this constraint is respected in the optimiza-
tion or not. (default: true)

Method ArrayWith falcon.Constraint

Creates an array of falcon.Constraint objects. This method is to a shortcut to create a
vector of the constraint objects without creating each object individually.

Keywords: Constraint Array

- Syntax -

1 arr = falcon.Constraint.ArrayWith(names)
2 arr = falcon.Constraint.ArrayWith(names,LowerBound)
3 arr = falcon.Constraint.ArrayWith(names,LowerBound,UpperBound)
4 arr = falcon.Constraint.ArrayWith(names,LowerBound,UpperBound,Scaling)
5 arr =

falcon.Constraint.ArrayWith(names,LowerBound,UpperBound,Scaling,Offset)
6 arr = falcon.Constraint.ArrayWith(names,LowerBound,UpperBound,Scaling,

Offset,Active)

- Inputs -
names The names of the falcon.Constraint object as a cell array.

LowerBound The sorted lower bounds of the constraint object. The size needs to
match the number of constraint names.

UpperBound The sorted upper bounds of the constraint object. The size needs to
match the number of constraint names.

Scaling The sorted scalings of the constraint object. The size needs to match the
number of constraint names.

Offset The sorted offsets of the constraint object. The size needs to match the number
of constraint names.

Active The sorted active flags of the constraint object. The size needs to match the
number of constraint names.

102 5 PROBLEM STRUCTURE USED IN FALCON.M

Method byName falcon.Constraint

The method returns all entries from the object array ’obj’ as fields of a struct, with the
object Name as field name. In case there are duplicate names, the output struct contains
object arrays.

Keywords: OVC byName

- Syntax -

1 [map] = obj.byName()

Method byNameUnique falcon.Constraint

The method returns all entries from the object array ’obj’ as fields of a struct, with the
object Name as field name. Throws an error in case there are any duplicate names.

Keywords: OVC byName Unique

- Syntax -

1 [map] = obj.byNameUnique()

Method eq falcon.Constraint

Keywords: none

Method find falcon.Constraint

Extract object array elements whose Name attributes match the given pattern, as deter-
mined by the regexp function. The returned array is empty if no element matches.

Keywords: none

- Syntax -

1 elements = array.find(pattern)

- Inputs -
pattern see documentation for regexp

- Outputs -
elements the entries of the object array whose names match

Method findFirst falcon.Constraint

Extract the first element from the array whose Name attribute matches the given pat-
tern, as determined by the regexp function. If no element matches, an exception is
thrown.

Keywords: none

5.10 falcon.Constraint 103

- Syntax -

1 element = array.findFirst(pattern)

- Inputs -
pattern see documentation for regexp

- Outputs -
element the first matching element

Method ne falcon.Constraint

Keywords: none

Method relaxBounds falcon.Constraint

For current bounds [a, b] and given bounds [c, d], set the bounds to [min(a, c), max(b,
d)].

Keywords: none

- Syntax -

1 obj.relaxBounds(lowerBound, upperBound)

- Inputs -
lowerBound scalar double

upperBound scalar double

Method relaxRange falcon.Constraint

For current bounds [a, b] and given bounds [c, d], set the bounds to [min(a, c), max(b,
d)].

Keywords: none

- Syntax -

1 obj.relaxRange(range)

- Inputs -
range two-element double vector

Method setActive falcon.Constraint

Set whether this object is active. In case the object is not active it will be ignored during
optimization.

Keywords: Flags Active

104 5 PROBLEM STRUCTURE USED IN FALCON.M

- Syntax -

1 obj.setActive(isActive)

Method setBounds falcon.Constraint

Set the lower and upper bound.
Keywords: none

- Syntax -

1 obj.setBounds(lowerBound, upperBound)

- Inputs -
lowerBound scalar double

upperBound scalar double

Method setLowerBound falcon.Constraint

Set the lower bound of this object. The input must be a real, scalar scalar and smaller
than the upper bound.

Keywords: OVC Bound Lower

- Syntax -

1 obj.setLowerBound(lowerBound)

- Inputs -
lowerBound Lower bound of this object.

Method setOffset falcon.Constraint

Set the offset of this object. Please note that the input must be a real, scalar value.
Keywords: OVC Offset

- Syntax -

1 obj.setOffset(offset)

- Inputs -
offset Offset of this object.

Method setRange falcon.Constraint

Set the lower and upper bound.
Keywords: none

5.10 falcon.Constraint 105

- Syntax -

1 obj.setRange(range)

- Inputs -
range a two-element double vector

Method setScaling falcon.Constraint

The input must be a real positive scalar value and should scale the value of this object
to a range between -1 and 1.

Keywords: OVC Scaling

- Syntax -

1 obj.setScaling(scaling)

- Inputs -
scaling Scaling of the this object.

Method setUpperBound falcon.Constraint

Set the upper bound of this object. The input must be a real, scalar value and bigger
than the lower bound.

Keywords: OVC Bound Upper

- Syntax -

1 obj.setUpperBound(upperBound)

- Inputs -
upperBound Upper bound of this object.

Method tightenBounds falcon.Constraint

For current bounds [a, b] and given bounds [c, d], set the bounds to [max(a, c), min(b,
d)].

Keywords: none

- Syntax -

1 obj.tightenBounds(lowerBound, upperBound)

- Inputs -
lowerBound scalar double

upperBound scalar double

106 5 PROBLEM STRUCTURE USED IN FALCON.M

Method tightenRange falcon.Constraint

For current bounds [a, b] and given bounds [c, d], set the bounds to [max(a, c), min(b,
d)].

Keywords: none

- Syntax -

1 obj.tightenRange(range)

- Inputs -
range two-element double vector

Method ToStruct falcon.Constraint

Extracts all relevant information from this constraint and stores it in the returned struct.
Keywords: Debugging Constraint

- Syntax -

1 strc = obj.ToStruct()

- Name Value -
DebugData Setting this option to true enables debug data in the ToStruct method.

5.11 falcon.core.PointFunction

Parent Classes: falcon.core.PathFunction

Properties

+ RelevantPhases (read-only)
The relevant phases for this pointfunction

+ RelevantStateGridIndices (read-only)
The relevant state grid indices for this pointfunction

+ RelevantNormalizedTimeSteps (read-only)
The relevant normalized times for this grid

+ Phase (read-only)
The phase this falcon.core.PathFunction belongs to

+ FunctionHandle (read-only)
Functionhandle to the function to be called

+ FunctionInfoStruct (read-only)
The struct keeping the information about the inputs and outputs of the used func-
tion.

5.11 falcon.core.PointFunction 107

+ OutputGrid (read-only)
Grids for the outputs of the path function. In case of a path function the time
points are also used for the inputs.

+ Parameters (read-only)
Relevant parameters

+ Constants (read-only)
Relevant constants

+ RelevantStateIndices (read-only)
The indices of the states required for this function

+ RelevantControlIndices (read-only)
The indices of the controls required for this function

+ RelevantModelOutputIndices (read-only)
The indices of the model outputs required for this function

+ RelevantParameterIndices (read-only)
The indices of the function parameters required by this function. Sorts the Param-
eters of the function to the parameters of the derivative model.

+ OutputMultipliers (read-only)
The multipliers of the output constraints for the Hamiltonian of the problem.

Methods

> addConstants
Add the given numbers to the list of constants used in this PathFunction.

> overwriteConstants
Overwrites the given numbers in the list of constants used in this PathFunction.

> setParameters
Set the given parameters as the parameters required in this PathFunction.

> ToStruct
Create a struct of this PathFunction object.

Method addConstants falcon.core.PointFunction

Adds the given array of constants to the list of constants relevant for this PathFunction.
Keywords: Path Function Constants

108 5 PROBLEM STRUCTURE USED IN FALCON.M

- Syntax -

1 obj.addConstants(Constant1, Constant2, ..)

- Inputs -
Constant1 An array of constant numbers used in this PathFunctionfor the first con-

stant.

Constant2 An array of constant numbers used in this PathFunctionfor the second
constant.

INFO Note that the third matrix dimension for constants with MultipleTimeEvaluation
set to true contains the evolution over the time steps, i.e., constants of size [n,m]
for each discretization step in the phase.

Method overwriteConstants falcon.core.PointFunction

Overwrites the given cell of constants in the list of constants relevant for this PathFunc-
tion.

Keywords: Path Function Overwrite Constants

- Syntax -

1 obj.overwriteConstants(Constant,...)

- Inputs -
ConstantsCell A cell of constant numbers used in this PathFunction.

ConstantsIdx An array of the size of constants cell containing the indices of the
constants that should be overwritten.

Method setParameters falcon.core.PointFunction

Sets the given array of parameters as the parameters relevant for this PathFunction. All
parameters given here will be used as the thrid input to the PathFunction.

Keywords: Path Function Parameters

- Syntax -

1 obj.setParameters(Parameters)

- Inputs -
Parameters An array of falcon.Parameter objects used in this PathFunction.

Method ToStruct falcon.core.PointFunction

This metod creates a struct of the falcon.core.PathFunction-object including all the nec-
essary information of the path function.

Keywords: Debugging Path Function

5.12 falcon.core.PathFunction 109

- Syntax -

1 strc = obj.ToStruct()

- Inputs -
obj falcon.core.PathFunction-object to be transformed in a struct.

- Name Value -
DebugData Setting this option to true enables debug data in the ToStruct method.

- Outputs -
strc struct containing the inherent properties of the falcon.core.PathFunction-object

5.12 falcon.core.PathFunction

Parent Classes: falcon.core.Handle, falcon.core.HasToStruct, falcon.core.HasProblem,
matlab.mixin.Heterogeneous

Properties

+ Phase (read-only)
The phase this falcon.core.PathFunction belongs to

+ FunctionHandle (read-only)
Functionhandle to the function to be called

+ FunctionInfoStruct (read-only)
The struct keeping the information about the inputs and outputs of the used func-
tion.

+ OutputGrid (read-only)
Grids for the outputs of the path function. In case of a path function the time
points are also used for the inputs.

+ Parameters (read-only)
Relevant parameters

+ Constants (read-only)
Relevant constants

+ RelevantStateIndices (read-only)
The indices of the states required for this function

+ RelevantControlIndices (read-only)
The indices of the controls required for this function

+ RelevantModelOutputIndices (read-only)
The indices of the model outputs required for this function

110 5 PROBLEM STRUCTURE USED IN FALCON.M

+ RelevantParameterIndices (read-only)
The indices of the function parameters required by this function. Sorts the Param-
eters of the function to the parameters of the derivative model.

+ OutputMultipliers (read-only)
The multipliers of the output constraints for the Hamiltonian of the problem.

Methods

> addConstants
Add the given numbers to the list of constants used in this PathFunction.

> overwriteConstants
Overwrites the given numbers in the list of constants used in this PathFunction.

> setParameters
Set the given parameters as the parameters required in this PathFunction.

> ToStruct
Create a struct of this PathFunction object.

Method addConstants falcon.core.PathFunction

Adds the given array of constants to the list of constants relevant for this PathFunction.
Keywords: Path Function Constants

- Syntax -

1 obj.addConstants(Constant1, Constant2, ..)

- Inputs -
Constant1 An array of constant numbers used in this PathFunctionfor the first con-

stant.

Constant2 An array of constant numbers used in this PathFunctionfor the second
constant.

INFO Note that the third matrix dimension for constants with MultipleTimeEvaluation
set to true contains the evolution over the time steps, i.e., constants of size [n,m]
for each discretization step in the phase.

Method overwriteConstants falcon.core.PathFunction

Overwrites the given cell of constants in the list of constants relevant for this PathFunc-
tion.

Keywords: Path Function Overwrite Constants

5.13 falcon.discretization.Trapezoidal 111

- Syntax -

1 obj.overwriteConstants(Constant,...)

- Inputs -
ConstantsCell A cell of constant numbers used in this PathFunction.

ConstantsIdx An array of the size of constants cell containing the indices of the
constants that should be overwritten.

Method setParameters falcon.core.PathFunction

Sets the given array of parameters as the parameters relevant for this PathFunction. All
parameters given here will be used as the thrid input to the PathFunction.

Keywords: Path Function Parameters

- Syntax -

1 obj.setParameters(Parameters)

- Inputs -
Parameters An array of falcon.Parameter objects used in this PathFunction.

Method ToStruct falcon.core.PathFunction

This metod creates a struct of the falcon.core.PathFunction-object including all the nec-
essary information of the path function.

Keywords: Debugging Path Function

- Syntax -

1 strc = obj.ToStruct()

- Inputs -
obj falcon.core.PathFunction-object to be transformed in a struct.

- Name Value -
DebugData Setting this option to true enables debug data in the ToStruct method.

- Outputs -
strc struct containing the inherent properties of the falcon.core.PathFunction-object

5.13 falcon.discretization.Trapezoidal

Parent Classes: falcon.discretization.DiscretizationMethod

112 5 PROBLEM STRUCTURE USED IN FALCON.M

Methods

Trapezoidal (Constructor)
This class represents a trapezoidal collocation method

> evaluateC
Evaluate the constraints of the optimal control problem

> evaluateF
Evaluate the residual vector of the problem for testing purposes.

> evaluateFandG
Evaluate the residual vector and gradient of the problem for testing purposes.

> evaluateG
Evaluate the gradient matrix of the problem for testing purposes.

> evaluateJ
Evaluate the cost function for the differential evolution.

Constructor falcon.discretization.Trapezoidal

Keywords: none

Method evaluateC falcon.discretization.Trapezoidal

Uses the parameter vector z to return the current constraints of the optimal control
problem.

Keywords: Discretization Evaluate Constraint

- Syntax -

1 C = obj.evaluateC(z)

- Inputs -
z A parameter vector for the discretized problem (use e.g. problem.zInitial).

Method evaluateF falcon.discretization.Trapezoidal

Uses the given parameter vector z to evaluate the residual vector of the discretized
problem.

Keywords: Discretization Evaluate Residual

- Syntax -

1 f = obj.evaluateF(z)

- Inputs -
z A parameter vector for the discretized problem (use e.g. problem.zInitial).

5.14 falcon.discretization.BackwardEuler 113

Method evaluateFandG falcon.discretization.Trapezoidal

Uses the given parameter vector z to evaluate the residual vector and gradient of the
discretized problem.

Keywords: Discretization Evaluate Residual, Discretization Evaluate Gradient

- Syntax -

1 [F,G] = obj.evaluateF(z)

- Inputs -
z A parameter vector for the discretized problem (use e.g. problem.zInitial).

Method evaluateG falcon.discretization.Trapezoidal

Uses the given parameter vector z to evaluate the sparse gradient matrix of the dis-
cretized problem.

Keywords: Discretization Evaluate Gradient

- Syntax -

1 grad = obj.evaluateG(z)

- Inputs -
z A parameter vector for the discretized problem (use e.g. problem.zInitial).

Method evaluateJ falcon.discretization.Trapezoidal

Uses the parameter vector z to return the current cost functional.
Keywords: Discretization Evaluate Cost

- Syntax -

1 J = obj.evaluateJ(z)

- Inputs -
z A parameter vector for the discretized problem (use e.g. problem.zInitial).

5.14 falcon.discretization.BackwardEuler

Parent Classes: falcon.discretization.DiscretizationMethod

Methods

BackwardEuler (Constructor)
This class represents a backward Euler collocation method

> evaluateC
Evaluate the constraints of the optimal control problem

114 5 PROBLEM STRUCTURE USED IN FALCON.M

> evaluateF
Evaluate the residual vector of the problem for testing purposes.

> evaluateFandG
Evaluate the residual vector and gradient of the problem for testing purposes.

> evaluateG
Evaluate the gradient matrix of the problem for testing purposes.

> evaluateJ
Evaluate the cost function for the differential evolution.

Constructor falcon.discretization.BackwardEuler

Keywords: none

Method evaluateC falcon.discretization.BackwardEuler

Uses the parameter vector z to return the current constraints of the optimal control
problem.

Keywords: Discretization Evaluate Constraint

- Syntax -

1 C = obj.evaluateC(z)

- Inputs -
z A parameter vector for the discretized problem (use e.g. problem.zInitial).

Method evaluateF falcon.discretization.BackwardEuler

Uses the given parameter vector z to evaluate the residual vector of the discretized
problem.

Keywords: Discretization Evaluate Residual

- Syntax -

1 f = obj.evaluateF(z)

- Inputs -
z A parameter vector for the discretized problem (use e.g. problem.zInitial).

Method evaluateFandG falcon.discretization.BackwardEuler

Uses the given parameter vector z to evaluate the residual vector and gradient of the
discretized problem.

Keywords: Discretization Evaluate Residual, Discretization Evaluate Gradient

5.15 falcon.solver.ipopt 115

- Syntax -

1 [F,G] = obj.evaluateF(z)

- Inputs -
z A parameter vector for the discretized problem (use e.g. problem.zInitial).

Method evaluateG falcon.discretization.BackwardEuler

Uses the given parameter vector z to evaluate the sparse gradient matrix of the dis-
cretized problem.

Keywords: Discretization Evaluate Gradient

- Syntax -

1 grad = obj.evaluateG(z)

- Inputs -
z A parameter vector for the discretized problem (use e.g. problem.zInitial).

Method evaluateJ falcon.discretization.BackwardEuler

Uses the parameter vector z to return the current cost functional.
Keywords: Discretization Evaluate Cost

- Syntax -

1 J = obj.evaluateJ(z)

- Inputs -
z A parameter vector for the discretized problem (use e.g. problem.zInitial).

5.15 falcon.solver.ipopt

Parent Classes: falcon.solver.Optimizer

Properties

+ MU_STRATEGY_MONOTONE (Constant, read-only, Default = monotone)
Identifier to set the mu strategy in ipopt to monotone.

+ MU_STRATEGY_ADAPTIVE (Constant, read-only, Default = adaptive)
Identifier to set the my strategy in ipopt to adaptive.

+ IPOPToptionsOverride
User-specified override options

+ WarmStartBoundPush (read-only, Default = 1e-15)
falcon.solver.ipopt/WarmStartBoundPush is a property.

116 5 PROBLEM STRUCTURE USED IN FALCON.M

+ WarmStartBoundFrac (read-only, Default = 1e-15)
falcon.solver.ipopt/WarmStartBoundFrac is a property.

+ WarmStartSlackBoundFrac (read-only, Default = 1e-15)
falcon.solver.ipopt/WarmStartSlackBoundFrac is a property.

+ WarmStartSlackBoundPush (read-only, Default = 1e-15)
falcon.solver.ipopt/WarmStartSlackBoundPush is a property.

+ WarmStartMultBoundPush (read-only, Default = 1e-15)
falcon.solver.ipopt/WarmStartMultBoundPush is a property.

+ WarmStartMultInitMax (read-only, Default = 2e+20)
falcon.solver.ipopt/WarmStartMultInitMax is a property.

+ BoundRelaxFactor (read-only, Default = 0)
falcon.solver.ipopt/BoundRelaxFactor is a property.

+ mu_init (read-only, Default = 0.1)
falcon.solver.ipopt/mu_init is a property.

+ mu_target (read-only, Default = 0)
falcon.solver.ipopt/mu_target is a property.

+ mu_min (read-only, Default = 1e-11)
falcon.solver.ipopt/mu_min is a property.

+ mu_max (read-only, Default = 100000)
falcon.solver.ipopt/mu_max is a property.

+ mu_max_fact (read-only, Default = 1000)
falcon.solver.ipopt/mu_max_fact is a property.

+ barrier_tol_factor (read-only, Default = 1)
falcon.solver.ipopt/barrier_tol_factor is a property.

+ mu_linear_decrease_factor (read-only, Default = 0.2)
falcon.solver.ipopt/mu_linear_decrease_factor is a property.

+ mu_superlinear_decrease_power (read-only, Default = 1.5)
falcon.solver.ipopt/mu_superlinear_decrease_power is a property.

+ bound_frac (read-only, Default = 0.01)
falcon.solver.ipopt/bound_frac is a property.

+ bound_push (read-only, Default = 0.01)
falcon.solver.ipopt/bound_push is a property.

+ slack_bound_frac (read-only, Default = 0.01)
falcon.solver.ipopt/slack_bound_frac is a property.

5.15 falcon.solver.ipopt 117

+ slack_bound_push (read-only, Default = 0.01)
falcon.solver.ipopt/slack_bound_push is a property.

+ bound_mult_init_val (read-only, Default = 1)
falcon.solver.ipopt/bound_mult_init_val is a property.

+ constr_mult_init_max (read-only, Default = 1000)
falcon.solver.ipopt/constr_mult_init_max is a property.

+ bound_mult_init_method (read-only, Default = constant)
falcon.solver.ipopt/bound_mult_init_method is a property.

+ LinearSolver (read-only, Default = ma57)
The linear solver used with IPOPT.

+ MuStrategy (read-only, Default = adaptive)
The mu update strategy in IPOPT. Allowed values are given in the class constants
MU_STRATEGY_MONOTONE and MU_STRATEGY_ADAPTIVE.

+ MaxCPUTime (read-only, Default = 1000000)
maximum cpu time in seconds

+ CallsJ (read-only, Default = 0)
The number of calls of the cost function

+ CallsJgrad (read-only, Default = 0)
The number of calls of the cost function gradient

+ CallsGgrad (read-only, Default = 0)
The number of calls of the constraint function gradient

+ CallsG (read-only, Default = 0)
The number of calls of the constraint function

+ CallsH (read-only, Default = 0)
The number of calls of the Hessian function

+ userIterFunc (read-only)
iteration function of user

+ UserIterFuncIgnoreErrors (read-only)
falcon.solver.ipopt/UserIterFuncIgnoreErrors is a property.

+ Problem (read-only)
The problem to be solved by this solver

+ recalcZFVec (read-only)
Flag to recalculate z and f vectors

118 5 PROBLEM STRUCTURE USED IN FALCON.M

+ Options
Struct keeping the main optimization options, being MajorOptTol, MinorOptTol,
MajorFeasTol, MinorFeasTol, ComplTol, ActIdxTol, MajorIterLimit, MinorIterLimit,
PrintLevel, OverwriteSol, needH, MCASamples, gPCOrder, sgrule, min_apprlevel.

+ OptimizationResults
A struct holding the optimization output from snopt

+ output
A struct holding the optimization output from ipopt

+ doSolverWarmStart
If solver is in WarmStart-mode or not.

Methods

ipopt (Constructor)
Constructs a falcon.solver.ipopt object.

> AnalyzeSolverResult
Make some analysis on the (optimal) solver results.

> CheckKKT
Check the KKT conditions of the problem.

> chooseLinearSolver
set default linear solver according to user preferences and solver availability

> getPreferredLinearSolversAvailable
Identify which linear solvers from a list of known solvers are available in the active
IPopt distribution.

> isLinearSolverAvailable
Check if a given linear solver is availabe in the active IPopt distribution by calling
ipopt on a trivial sample problem.

> ParseConsoleOutput (Static)
Extract information on the iterations of the optimization from the console output
created.

> setBarrierTolFactor
Factor for mu in barrier stop test.

> setFlagRecalculcZFVec
Set the flag to recalculate the optimization parameter and residual vector.

> setIterationFunction
Specify a function that is to be executed in every iteration.

5.15 falcon.solver.ipopt 119

> setLinearSolver
Sets the linear solver used in ipopt.

> setMaximumCPUTime
Sets the maximum cpu time (seconds) for ipopt. (http://www.coin-or.org/Ipopt/documentation/node42.html#SECTION000112030000000000000)

> setMuInit
Sets the initial mu value.

> setMuLinearDecreaseFactor
Determines linear decrease rate of barrier parameter.

> setMuMax
Sets the maximum mu value.

> setMuMaxFact
Factor for initialization of maximum value for barrier parameter.

> setMuMin
Sets the minimum mu value.

> setMuStrategy
Sets the mu update strategy used in ipopt.

> setMuSuperLinearDecreaseFactor
Determines superlinear decrease rate of barrier parameter.

> setMuTarget
Sets the mu target value.

> setProblem
Set the problem to be solved.

> setStandardStart
Sets the standard bound and push start options.

> setWarmStart
Sets the warm start feature of ipopt.

> Solve
Solve the given optimal control problem using IPOPT

> WarmStart
Continue solving the project starting from the last iterate.

Constructor falcon.solver.ipopt

Creates a new ipopt interface object used to numerically solve an optimal control prob-
lem. The problem can either directly be set, or can later be added using the method
setProblem.

Keywords: Constructor Ipopt

120 5 PROBLEM STRUCTURE USED IN FALCON.M

- Syntax -

1 obj = ipopt()
2 obj = ipopt(Problem)

- Inputs -
Problem The problem to be solved using this numerical solver.

Method AnalyzeSolverResult falcon.solver.ipopt

This function makes some analysis on the (optimal) results from the solver. It specifi-
cally checks KKT conditions, constraint fulfillment, scalings,...

Keywords: Optimizer Checks Analyze

- Syntax -

1 obj.AnalyzeSolverResult()

- Name Value -
checkGradient Makes a gradient check by comparison to finite differences (default:

false).

checkScaling Makes a scaling check (default: false).

doSimulation Simulate the problem with the optimal control history and find e.g.,
numerical instabilities or stiff integrations (default: false).

Method CheckKKT falcon.solver.ipopt

Calculate the Jacobian of the Lagrange function and extract the largest value. This is an
approximate KKT condition check.

Keywords: Optimizer Checks KKT

- Syntax -

1 dLdz = obj.CheckKKT()
2 dLdz = obj.CheckKKT(’Name’, Value)

- Name Value -
lambda The multipliers for the constraints f in the problem. (default: the values from

the optimal solution, if the problem was already solved.)

zl The multipliers for the lower bounds of z. (default: the values from the optimal
solution, if the problem was already solved.)

zu The multipliers for the upper bounds of z. (default: the values from the optimal
solution, if the problem was already solved.)

mu The combined multipliers for the bounds of z: mu = -zl + zu. (default: the values
from the optimal solution, if the problem was already solved.)

5.15 falcon.solver.ipopt 121

- Outputs -
dLdz The Jacobian of the Lagrange function with respect to the parameter vector z.

Method chooseLinearSolver falcon.solver.ipopt

Keywords: none

Method getPreferredLinearSolversAvailable falcon.solver.ipopt

Keywords: none

Method isLinearSolverAvailable falcon.solver.ipopt

Keywords: none

Method ParseConsoleOutput falcon.solver.ipopt

Parse the console output created by the optimization and automatically analyze it. The
resulting data on the iteration history is returned in a struct.

Keywords: Ipopt Parser

- Syntax -

1 data = falcon.solver.ipopt.ParseConsoleOutput(str)

- Outputs -
data The data struct containing information about the iteration history while solving

the problem.

Method setBarrierTolFactor falcon.solver.ipopt

The convergence tolerance for each barrier problem in the monotone mode is the value
of the barrier parameter times "barrier tol factor". This option is also used in the adap-
tive mu strategy during the monotone mode. (This is kappa epsilon in implementation
paper). The valid range for this real option is 0 < barrier tol factor < inf and its default
value is 10.

Keywords: Ipopt Settings Mu Barrier Tolerance

- Syntax -

1 obj.setBarrierTolFactor(Value)

- Inputs -
Value The numerical barrier tolerance factor value

122 5 PROBLEM STRUCTURE USED IN FALCON.M

Method setFlagRecalculcZFVec falcon.solver.ipopt

When the flag is true, the z and f vectors are recalculated each time the solve command
is invoked. This allows fast initial guess studies or different bounds. It should be noted
that the general problem is not allowed to change.

Keywords: Optimizer RecalcZFFlag

- Syntax -

1 obj.setFlagRecalculcZFVec(flag)

- Inputs -
flag Flag to recalculate z and f vector (default: false).

Method setIterationFunction falcon.solver.ipopt

The given function is executed in every NLP iteration. By default, exceptions thrown
by the iteration function are ignored, i.e. converted to warnings. Optionally, exceptions
can be passed through to the user (’IgnoreErrors’, false). The iteartion function must
accept three inputs:

Keywords: Ipopt Settings IterationFunction

- Syntax -

1 self.setIterationFunction(f)
2 self.setIterationFunction(f, ’IgnoreErrors’, true/false)

nIter current iteration number.

J current cost function value.

problem the falcon.Problem instance. The iteration function provides a scalar logical
output, that indicates if the solver should continue (true) or stop (false).

Method setLinearSolver falcon.solver.ipopt

Sets the linear solver used by ipopt to solve the NLP.
Keywords: Ipopt Settings Linear Solver

- Syntax -

1 obj.setLinearSolver(LinSolver)

- Inputs -
LinSolver A char specifiying the linear solver. The default is ma57.

Method setMaximumCPUTime falcon.solver.ipopt

Sets the maximum cpu time in the ipopt instance used here.
Keywords: Ipopt Settings CPU Time

5.15 falcon.solver.ipopt 123

- Syntax -

1 obj.setMaximumCPUTime(Seconds)

- Inputs -
Seconds The maximum cpu time ipopt is allowed to use to solve the problem. Limit

is checked during conversion check.

Method setMuInit falcon.solver.ipopt

Sets the initial mu value, i.e., the iteration start point.
Keywords: Ipopt Settings Mu Initial

- Syntax -

1 obj.setMuInit(Target)

- Inputs -
Target The numerical initial value

Method setMuLinearDecreaseFactor falcon.solver.ipopt

For the Fiacco-McCormick update procedure the new barrier parameter mu is obtained
by taking the minimum of mu times "mu linear decrease factor" and mu"superlinear
decrease power". (This is kappa mu in implementation paper.) This option is also used
in the adaptive mu strategy during the monotone mode. The valid range for this real
option is 0 < mu linear decrease factor < 1 and its default value is 0.2.

Keywords: Ipopt Settings Mu Linear Decrease

- Syntax -

1 obj.setMuLinearDecreaseFactor(Value)

- Inputs -
Value The numerical linear barrier decrease value

Method setMuMax falcon.solver.ipopt

Sets the maximum mu value, i.e., the upper bound of the barrier parameter (mainly for
adaptive strategies)

Keywords: Ipopt Settings Mu Maximum

- Syntax -

1 obj.setMuMax(Value)

- Inputs -
Value The numerical maximum value

124 5 PROBLEM STRUCTURE USED IN FALCON.M

Method setMuMaxFact falcon.solver.ipopt

This option determines the upper bound on the barrier parameter. This upper bound
is computed as the average complementarity at the initial point times the value of this
option. (Only used if option "mu strategy" is chosen as "adaptive".) The valid range for
this real option is 0 < mu max fact < inf and its default value is 1000.

Keywords: Ipopt Settings Mu Maximum Factor

- Syntax -
1 obj.setMuMaxFact(Value)

- Inputs -
Value The numerical maximum factor value

Method setMuMin falcon.solver.ipopt

Sets the minimum mu value, i.e., the lower bound of the barrier parameter (mainly for
adaptive strategies)

Keywords: Ipopt Settings Mu Minimum

- Syntax -
1 obj.setMuMin(Value)

- Inputs -
Value The numerical minimum value

Method setMuStrategy falcon.solver.ipopt

Sets the mu update strategy in the ipopt instance used here.
Keywords: Ipopt Settings Mu Strategy

- Syntax -
1 obj.setMuStrategy(Strategy)

- Inputs -
Strategy The mu update strategy to be used for solving the problem. Supported val-

ues can be found in the constants MU_STRATEGY_MONOTONE and MU_STRATEGY_ADAPTIVE
in this class.

Method setMuSuperLinearDecreaseFactor falcon.solver.ipopt

For the Fiacco-McCormick update procedure the new barrier parameter mu is obtained
by taking the minimum of mu times "mu linear decrease factor" and mu"superlinear
decrease power". (This is theta mu in implementation paper.) This option is also used
in the adaptive mu strategy during the monotone mode. The valid range for this real
option is 1 < mu superlinear decrease power < 2 and its default value is 1.5.

Keywords: Ipopt Settings Mu Superlinear Decrease

5.15 falcon.solver.ipopt 125

- Syntax -

1 obj.setMuSuperLinearDecreaseFactor(Value)

- Inputs -
Value The numerical superlinear barrier decrease value

Method setMuTarget falcon.solver.ipopt

Sets the mu target value, i.e., the value of that defines to which extend the complemen-
tary slackness conditions must be fulfilled to view a constraint as "fulfilled". A larger
value leads to an easier to solve problem, but might be unphysical.

Keywords: Ipopt Settings Mu Target

- Syntax -

1 obj.setMuTarget(Target)

- Inputs -
Target The numerical target value

Method setProblem falcon.solver.ipopt

Sets the optimal control problem to be numerically solved using this solver.
Keywords: Optimizer Problem

- Syntax -

1 obj.setProblem(Problem)

- Inputs -
Problem The problem to be solved using this numerical solver.

Method setStandardStart falcon.solver.ipopt

Resets the values for the standard bound values in ipopt (default values as in ipopt
manual).

Keywords: Ipopt Standard Start

- Syntax -

1 obj.setStandardStart(’Name’,Value)

- Name Value -
bound_frac Desired minimum absolute distance from the initial point to bound (to-

gether with "bound push").

bound_push Desired minimum absolute distance from the initial point to bound (to-
gether with "bound frac").

126 5 PROBLEM STRUCTURE USED IN FALCON.M

slack_bound_frac Desired minimum relative distance from the initial slack to bound(together
with "slack bound push").

slack_bound_push Desired minimum relative distance from the initial slack to bound(together
with "slack bound frac").

bound_mult_init_val Initial value for the bound multipliers.

constr_mult_init_max Maximum allowed least-square guess of constraint multi-
pliers.

bound_mult_init_method Initialization method for bound multipliers.

Method setWarmStart falcon.solver.ipopt

Enables or disables the warm start feature of IPOPT. Sets the flag to specify warm start
bounds and relaxation.

Keywords: Ipopt Warm Start

- Syntax -

1 obj.setWarmStart(flag, ’Name’,Value)

- Inputs -
flag A bool, enabling or disabling the warmstart feature of IPOPT.

- Name Value -
WarmStartBoundPush same as bound push for the regular initializer.

WarmStartBoundFrac same as bound frac for the regular initializer.

WarmStartSlackBoundFrac same as slack bound frac for the regular initializer.

WarmStartSlackBoundPush same as slack bound push for the regular initializer.

WarmStartMultBoundPush same as mult bound push for the regular initializer.

WarmStartMultInitMax Maximum initial value for the equality multipliers.

BoundRelaxFactor Factor for initial relaxation of the bounds.

mu_init Initial value for the barrier parameter.

Method Solve falcon.solver.ipopt

Solve the given optimal control problem numerically using the numerical solver ipopt.
Keywords: Ipopt Solve

5.15 falcon.solver.ipopt 127

- Syntax -

1 [z_opt, F_opt, status, lambda, mu, zl, zu] = obj.Solve()
2 [z_opt, F_opt, status, lambda, mu, zl, zu] = obj.Solve(zInitial)
3 [z_opt, F_opt, status, lambda, mu, zl, zu] = obj.Solve(..., ’Name’,

Value)

- Name Value -
zInitial The initial parameter vector to start the solution.

lambda The initial Lagrange multipliers

zl The initial multipliers for the lower constraints on the parameter vector z.

zu The initial multipliers for the upper constraints on the parameter vector z.

- Outputs -
z_opt If the problem converged, the optimal parameter vector for the problem, other-

wise the current iterate.

F_opt If the problem converged, the optimal constraint vector for the problem, other-
wise the current iterate.

status The status of the optimization. Contains the stopping criteria.

lambda If the problem converged, the optimal Lagrange multipliers for the constraints
of problem, otherwise the current iterate.

mu If the problem converged, the optimal Lagrange multipliers for the box constraints
on z of the problem, otherwise the current iterate.

zl If the problem converged, the optimal Lagrange multipliers for the lower bounds of
the box constraints on z of the problem, otherwise the current iterate.

zu If the problem converged, the optimal Lagrange multipliers for the upper bounds of
the box constraints on z of the problem, otherwise the current iterate.

IterationFunction The iteration function that should be called in each Ipopt itera-
tion callback specified by the user. The function accepts three inputs and provides
one output: function b = iterfunc(nIter, f, auxdata)

Method WarmStart falcon.solver.ipopt

Solve the given optimal control problem numerically using the numerical solver ipopt.
The WarmStartMode of IPOPT is not changed within this function. Try changing obj.setWarmStart()
to true in case you have problems warm starting the solver.

Keywords: Ipopt Warm Start

128 5 PROBLEM STRUCTURE USED IN FALCON.M

- Syntax -

1 [z_opt, F_opt, status, lambda, mu, zl, zu] = obj.WarmStart(’Name’,Value)

- Name Value -
zInitial Initial guess for the optimization variables.

lInitial Initial guess for the constraint multiplier.

zlInitial Initial guess for the lower bound multiplier of the optimization parameter.

zuInitial Initial guess for the upper bound multiplier of the optimization parameter.

zLowerBound Lower bounds on optimization variables.

zUpperBound Upper bounds on optimization variables.

- Outputs -
z_opt If the problem converged, the optimal parameter vector for the problem, other-

wise the current iterate.

F_opt If the problem converged, the optimal constraint vector for the problem, other-
wise the current iterate.

status The status of the optimization. Contains the stopping criteria.

lambda If the problem converged, the optimal Lagrange multipliers for the constraints
of problem, otherwise the current iterate.

mu If the problem converged, the optimal Lagrange multipliers for the box constraints
on z of the problem, otherwise the current iterate.

zl If the problem converged, the optimal Lagrange multipliers for the lower bounds of
the box constraints on z of the problem, otherwise the current iterate.

zu If the problem converged, the optimal Lagrange multipliers for the upper bounds of
the box constraints on z of the problem, otherwise the current iterate.

IterationFunction The iteration function that should be called in each Ipopt itera-
tion callback specified by the user. The function accepts three inputs and provides
one output: function b = iterfunc(nIter, f, auxdata)

5.16 Common Objectives and Constraints

Some common elements are very useful for various application problems. FALCON.m
provides generic implementations of such components to make them more easily acces-
sible. These features do not use the FALCON.m model builder infrastructure and are
evaluated directly in MATLAB.

5.16 Common Objectives and Constraints 129

5.16.1 Linear Path Function

The falcon.lib.SimpleLinearPathFunction implements a path function (as
generated by falcon.PathConstraintBuilder) of the form

r(t) = w(t)T (v(t)− v0(t)) (53)

where v is a vector of states, controls, outputs and parameters, v0 is an offset vector and
w is a weight vector. The offset and weight vectors may vary over normalized time. The
evaluate() method of the generated object can be added to a phase as a Lagrange
cost term or a path constraint.

Create a linear path function (objective/constraint) of the form value[m, i] = w[i]’
* (v[i] - v0[i]) with a vector of variables v (including States, Controls, Parameters and
Outputs in arbitrary order), offset vector v0 and weight vector w; the subscript i repre-
sents a sample index.

Keywords: none

- Syntax -
1 [f] = falcon.lib.SimpleLinearPathFunction(variables)
2 [f] = falcon.lib.SimpleLinearPathFunction(..., ’Name’, Value)

- Inputs -
variables The vector of variables v.

- Name Value -
Weight The weights corresponding to v, specified either as a column vector w with w[i]

= w for all i, or a matrix with varying weights, W = [w[1] ... w[N]]. Defaults to
one.

Offset The offsets corresponding to v, specified either as a column vector v0 with
v0[i] = v0 for all i, or a matrix with varying offsets, V0 = [v0[1] ... v0[N]].
Defaults to zero.

5.16.2 Quadratic Path Function

The falcon.lib.SimpleQuadraticPathFunction implements a path function
(as generated by falcon.PathConstraintBuilder) of the form

r(t) =
1

2
(v(t)− v0(t))

T W (t) (v(t)− v0(t)) (54)

where v is a vector of states, controls, outputs and parameters, v0 is an offset vector and
W is a weight matrix. The offset vector and weight matrix may vary over normalized
time. The evaluate() method of the generated object can be added to a phase as a
Lagrange cost term or a path constraint.

Create a quadratic path function (objective/constraint) of the form value[i] = 0.5
* (v[i] - v0[i])’ * W[i] * (v[i] - v0[i]) with a vector of variables v (including States,
Controls, Parameters and Outputs in arbitrary order), offset vector v0 and weight matrix
W; the subscript i represents a sample index.

Keywords: none

130 5 PROBLEM STRUCTURE USED IN FALCON.M

- Syntax -

1 [f] = falcon.lib.SimpleQuadraticPathFunction(variables)
2 [f] = falcon.lib.SimpleQuadraticPathFunction(..., ’Name’, Value)

- Inputs -
variables The vector of variables v.

- Name Value -
WeightMatrix The weights corresponding to v, specified either as a matrix W with

W[i] = W for all i, or a 3D array with varying weights, W = cat(3, W[1], ...
W[N]). Defaults to identity.

Offset The offsets corresponding to v, specified either as a column vector v0 with
v0[i] = v0 for all i, or a matrix with varying offsets, V0 = [v0[1] ... v0[N]].
Defaults to zero.

NumSamples The number of samples N where i ranges from 1 to N. Defaults to the
maximum number of columns of W and V0.

5.16.3 Linear Point Function

The falcon.lib.SimpleLinearPointFunction implements a point function (as
generated by falcon.PointConstraintBuilder) of the form

r =
∑
i

w(ti)
T (v(ti)− v0(ti)) (55)

where v is a vector of states, controls, outputs and parameters, v0 is an offset vector and
w is a weight vector. The offset and weight vectors may be given for multiple samples.
The value is the sum of the terms from the samples ti. The evaluate() method of the
generated object can be added to a problem as a Mayer cost term or a point constraint.

Create a linear point function (objective/constraint) of the form value = sum[i] (
w[i]’ * (v[i] - v0[i])) with a vector of variables v (including States, Controls, Parameters
and Outputs in arbitrary order), offset vector v0 and weight vector w; the subscript
i represents a sample index. The function accepts inputs from a single phase only.
However, multiple samples from this phase may be used. Note: If the function is applied
to multiple samples and v includes parameters, these are replicated to all samples. For
example, given v = [p] with a parameter p, constant weights w[i] = w and offsets v0[i]
= v0 = [p0] and N samples, the result is N * w * (p - p0).

Keywords: none

- Syntax -

1 [f] = falcon.lib.SimpleLinearPointFunction(variables)
2 [f] = falcon.lib.SimpleLinearPointFunction(..., ’Name’, Value)

- Inputs -
variables The vector of variables v.

5.16 Common Objectives and Constraints 131

- Name Value -
Weight The weights corresponding to v, specified either as a column vector w with w[i]

= w for all i, or a matrix with varying weights, W = [w[1] ... w[N]]. Defaults to
one.

Offset The offsets corresponding to v, specified either as a column vector v0 with
v0[i] = v0 for all i, or a matrix with varying offsets, V0 = [v0[1] ... v0[N]].
Defaults to zero.

NumSamples The number of samples N where i ranges from 1 to N. Defaults to the
maximum number of columns of W and V0.

5.16.4 Quadratic Point Function

The falcon.lib.SimpleQuadraticPointFunction implements a point function
(as generated by falcon.PointConstraintBuilder) of the form

r =
1

2
(v(ti)− v0(ti))

TW (ti) (v(ti)− v0(ti)) (56)

where v is a vector of states, controls, outputs and parameters, v0 is an offset vector and
W is a weight matrix. The offset vector and weight matrix may be given for multiple
samples. The value is the sum of the terms from the samples ti. The evaluate()
method of the generated object can be added to a problem as a Mayer cost term or a
point constraint.

Create a quadratic point function (objective/constraint) of the form value = 0.5
* sum[i]((v[i] - v0[i])’ * W[i] * (v[i] - v0[i])) with a vector of variables v (including
States, Controls, Parameters and Outputs in arbitrary order), offset vector v0 and weight
matrix W; the subscript i represents a sample index. The function accepts inputs from a
single phase only. However, multiple samples from this phase may be used. Note: If the
function is applied to multiple samples and v includes parameters, these are replicated
to all samples. For example, given v = [p] with a parameter p, constant weights W[i]
= W and offsets v0[i] = v0 = [p0] and N samples, the result is N * (p - p0)’ * W * (p -
p0).

Keywords: none

- Syntax -

1 [f] = falcon.lib.SimpleQuadraticPointFunction(variables)
2 [f] = falcon.lib.SimpleQuadraticPointFunction(..., ’Name’, Value)

- Inputs -
variables The vector of variables v.

- Name Value -
WeightMatrix The weights corresponding to v, specified either as a matrix W with

W[i] = W for all i, or a 3D array with varying weights, W = cat(3, W[1], ...
W[N]). Defaults to identity.

132 5 PROBLEM STRUCTURE USED IN FALCON.M

Offset The offsets corresponding to v, specified either as a column vector v0 with
v0[i] = v0 for all i, or a matrix with varying offsets, V0 = [v0[1] ... v0[N]].
Defaults to zero.

NumSamples The number of samples N where i ranges from 1 to N. Defaults to the
maximum number of columns of W and V0.

5.16.5 Rate Limit

The falcon.lib.RateLimit implements a simple finite-difference based rate limit
of the form

u̇lb ≤
u[k + 1]− u[k]

t[k + 1]− t[k]
≤ u̇ub (57)

where u is a vector of either controls or states or outputs, u̇lb ≤ u̇ub are the lower and
upper bounds on the rate, and k is the sample index in the time discretization. This rate
limit provides a simple and efficient alternative to adding additional states in order to
limit the rate of change of other signals. It is particularly well suited to imposing control
rate limits.

Create a rate constraint of the form du.lb <= (u[k+1] - u[k]) / (t[k+1] - t[k]) <=
du.ub with a vector of variables u (States, Controls, and Outputs in arbitrary order);
the subscript k represents a sample index. The generated object is automatically added
as a point constraint upon construction. The function accepts inputs from a single phase
only. Note that a rate limit within a phase does not prevent discontinuities across phase
boundaries. To enforce a rate limit also across phase boundaries, ensure continuity of
the relevant signals using a falcon.lib.ContinuityConstraint in addition to the RateLimit.

Keywords: none

- Syntax -

1 [c] = falcon.lib.RateLimit(signals, phase)
2 [c] = falcon.lib.RateLimit(..., ’Name’, Value)

- Inputs -
signals The relevant signals. All of these must have the same type (State/Control/-

Parameter).

phase The phase where the rate limit is to be applied.

- Name Value -
NormalizedTime The samples to consider. Defaults to the state grid discretization

of the given phase. Note that the finite difference approximation to the rates is
not calculated at each sample, but between neighbouring samples. If the actual
discretization of the relevant signals is finer than the samples given here, the rate
limit refers to the average rate between the given samples, which is usually not
intended.

133

Constraints The constraints, given either as a scalar (valid for all signals / all time
steps), a vector (corresponding to the number of signals) or a matrix (number
of signals by number of time steps). Defaults to autogenerated unbounded con-
straints.

5.16.6 Continuity Constraint

The falcon.lib.ContinuityConstraint imposes a simple C0 continuity con-
straint on given signals at the boundaries of given phases. It is intended primarily for
use as an auxiliary constraint to enforce a control rate limit across phase boundaries.

Create a point constraint that enforces continuity of the given signals at the bound-
aries between the given phases. It is assumed that the phases are connected in the
given order, but this is neither checked nor required. To ensure continuity across a peri-
odic boundary, pass the same phase twice. The generated object is automatically added
as a point constraint upon construction. This constraint is particularly useful to guar-
antee the continuity of controls across phase boundaries. For state continuity, usually
falcon.Problem.ConnectPhases() and falcon.Problem.ConnectAllPhases() are used.

Keywords: none

- Syntax -

1 [c] = falcon.lib.ContinuityConstraint(signals, phases)

- Inputs -
signals The relevant signals. All of these must have the same type (State/Con-

trol/Output).

phases The relevant phases. At least two phases are required; phases need not be
unique, though they should be in most cases.

6 Parameter Estimation Using FALCON.m

The public version of FALCON.m includes an optimal control-based implementation of
the Output Error Method [6, 5]. The theoretical background of this toolbox, some
details of the implementation, as well as practical application examples can be found in
the open-access publication [4].

The system identification is well-integrated into the original Falcon.m framework
such that the interfaces are either the same or very similar. The FALCON.m package
includes parameter estimation examples (in the folder /Examples/ParameterEstima-
tion) which can be used as a reference for setting up a parameter estimation prob-
lem. This process includes setting up a linear or nonlinear model structure in the FAL-
CON.m framework, casting the experiment data into FALCON.m experiments, selecting
the FALCON.m setting and finally calling the selected solver to solve the problem and
estimate the unknown parameters. We use the B777Lat example to demonstrate the
structure of such a problem. The model structure and the script that builds the model
for further use is stored in the Model subfolder. The model is built by calling the

134 6 PARAMETER ESTIMATION USING FALCON.M

buildB777LatModel.m script. Similar to the models used for optimal control, the
build process involves generating C-code and subsequently MATLAB executables of the
model functions. Besides the model function itself, executables are built for the model
integration over time and also for the propagation of the sensitivity equations. The
model system dynamics equation is implemented in B777LatSystemDynamic.m and
the output equation is implemented in B777LatOutput.m. Both functions are called
with the symbolic variables defined for the the system inputs, states, parameters, and
outputs in the buildB777LatModel.m script:

1 mdl_build.addSubsystem(B777LatSystemDynamic,...
2 ’Outputs’,{’r_dot’, ’beta_dot’, ’p_dot’, ’phi_dot’},...
3 ’Inputs’, {’r’, ’beta’, ’p’, ’phi’, ...
4 ’xi’, ’zeta’, ...
5 ’N_r’, ’N_beta’, ’N_p’, ’N_xi’, ’N_zeta’, ’Y_r’, ’Y_beta’, ’Y_p’,

’Y_xi’, ’Y_zeta’, ’L_r’, ’L_beta’, ’L_p’, ’L_xi’, ’L_zeta’});
6

7

8 mdl_build.addSubsystem(B777LatOutput, ...
9 ’Outputs’,{’y_r’, ’y_beta’, ’y_p’, ’y_phi’},...

10 ’Inputs’, {’r’, ’beta’, ’p’, ’phi’, ...
11 ’xi’, ’zeta’, ...
12 ’N_r’, ’N_beta’, ’N_p’, ’N_xi’, ’N_zeta’, ’Y_r’, ’Y_beta’, ’Y_p’,

’Y_xi’, ’Y_zeta’, ’L_r’, ’L_beta’, ’L_p’, ’L_xi’, ’L_zeta’});

The B777Lat example includes a data generation script generateDataB777.m,
which initializes the paths and also calls the buildB777LatModel.m script. Fur-
thermore, the script simulates the model (via the already created MATLAB-Executable)
using typical system identification scripts, and subsequently adds noise to the model
outputs to generate virtual flight data. Initial values (here true values) of the model
parameters are needed to simulate the model. The virtual data are then stored into
FALCON.m experiments as in the example below:

1 iExp = iExp + 1;
2 t_end = 15;
3 t = 0:delta_t:t_end;
4

5 A = 0.3;
6 u = zeros(2, length(t));
7 u(2, t>3 & t<=4.5) = A;
8 u(2, t>4.5 & t<=6) = -A;
9

10 [~, y] = feval([func2str(modelFunc), ’_sim’], t, x0, u, p);
11 z = y + NoiseCov.^0.5*randn(size(y));
12 for ii = 1:size(z,1)
13 z(ii, 1:NanPeriods(ii):end) = nan();
14 end
15

16 experiments(iExp) = falcon.parest.Experiment(t, u, t, z);
17 experiments(iExp).x0 = x0;
18 experiments(iExp).Tags.Direction = ’Lat’;
19 experiments(iExp).Tags.Control = ’zeta’;
20 experiments(iExp).Tags.Type = ’doublet’;
21 experiments(iExp).Tags.Iteration = 1;
22 experiments(iExp).Tags.ExperimentNumber = iExp;

135

All of the experiments are then saved into a MATLAB file in the folder Data via the
following command at the end of the script:

1 experiments.ToFile(fullfile(BasePath, ’Data’, ’data_B777Lat.mat’))

The main_estimateB777.m script is where the main parameter estimation task
takes place. In this script, symbolic variables for the states, parameters, outputs, and
controls are defined which match the names used in the model. The user should also
provide initial parameter values as seen in the example. Furthermore, the FALCON.m
system identification framework allows for box constraints (upper and lower limits)
to be considered for for each parameters using the UpperBound and LowerBound
properties when defining the parameters for parameter estimation as in the example
below. Parameters can also be set fixed (i.e. known) for the parameter estimation.

1 falcon.parest.Parameter(’Y_beta’, ’Value’, -0.2462, ’Fixed’, false,
’UpperBound’, 1, ’LowerBound’, 0);...

The user can also set the the initial states (at the initial time point of the experiment)
fixed or as free parameters to be estimated in addition to the aerodynamic parameters
of the system as in the example below.

1 for iExp = experiments.’
2 % % set selected ones fixed
3 % iExp.x0.setFixed([...
4 % false, ... % r
5 % false, ... % beta
6 % false, ... % p
7 % false, ... % phi
8 %]);
9

10 % set all fixed
11 iExp.x0.setFixed(false);
12 end

In the next step, the parameter estimation problem is set up

1 % initialize problem
2 ParameterEstimationProblem = falcon.parest.Problem(’B777LatEstimation’);
3 % add model, states, controls, parameters, outputs
4 ParameterEstimationProblem.addModel(@B777Lat, IdParameters, states,

controls, outputs);

based on the prepared model before and the experiments are added to it

1 ParameterEstimationProblem.addNewExperiment(experiments);
2 % generate initial guess for states
3 experiments.makeStateInitialGuess(’simulate’);

The next lines of code are specially important for solving the paremter estimation
problem via the optimal control methods as described in [4]. The optimal control solu-
tion method replaces the integration of the states over time with full discretization. The
state dynamics are enforced via a numerical integration scheme as equality constraints.
Therefore, the optimal control solver requires an initialization for the state grid. The
example demonstrates two options to generate state grid initial guesses, either by sim-
ulating the system (using initial parameter values) by the experiment inputs,

136 6 PARAMETER ESTIMATION USING FALCON.M

1 % generate initial guess for states
2 experiments.makeStateInitialGuess(’simulate’);

or by smoothing the experiment measurements (if available for all states) and inserting
the measurement values into the state grids, as follows:

1 for iExp = experiments(:).’
2 z = iExp.getMeasurementValues();
3 x = z{1};
4 for iX = 1:size(z{1}, 1)
5 x(iX, :) = smooth(x(iX, :), 20)’;
6 end
7

8 iExp.makeStateInitialGuess(’set’, x);
9 end

In the next step, the cost function can be chosen. The user can choose between the
least squares cost function, the Maximum Likelihood cost (as described in [6]) or the
modified Maximum Likeklihood cost function (as described in [5]).

1 costfunction = falcon.parest.costfunction.MaximumLikelihood();
2 % costfunction = falcon.parest.costfunction.MaximumLikelihood_mod();
3 % costfunction = falcon.parest.costfunction.LeastSquares();

Different methods are also implemented for automatically scaling the cost function
based on its value, or its gradient. The user can also manually choose a fixed scalar
scaling. Furthermore, different sampling rates in the experiment data can be taken care
of via the CovarianceScalingMatrix property.

Before choosing the solver and running the optimization, plots can be configured
to visualize the model outputs at each optimization iteration. Furthermore, the initial
parameter values can be improved by means of the Equation Error Method prior to
parameter estimation via Output Error Method

1 %
ParameterEstimationProblem.improveInitialModelParameters(’useInitialStateGuess’,
’PrintLevel’, 5);

2 ParameterEstimationProblem.improveInitialModelParameters(’EEM’,
’PrintLevel’, 5);

In the next step, the user can choose the solver. ipopt should be chosen as the
solver in order to use the optimal control-based approach for parameter estimation

1 optimizer = falcon.solver.ipopt();
2 ParameterEstimationProblem.Bake()

Levenberg-Marquart or the Gauss-Newton method can be selected, to apply the tra-
ditional single shooting parameter estimation approaches as described in [6, 5]

1 % % OptimizationStepAlgorithm = falcon.parest.optimization.GaussNewton;
2 OptimizationStepAlgorithm =

falcon.parest.optimization.LevenbergMarquardt;
3 optimizer = falcon.parest.solver(OptimizationStepAlgorithm);
4 % optimizer.ParEstSolverOptions.ParallelWorkers = 3;
5 optimizer.ParEstSolverOptions.ParallelProfile = ’local’;

The method
1 ParameterEstimationProblem.computeParameterStatistics();

137

can be called upon solving the problem to compute the parameter covariance matrix.
Finally, we plot the parameter estimation results in the example and save them to a
Matlab file in the data folder

1 IdParameters.ToFile(fullfile(fileparts(which(’data_B777Lat.mat’)),
’parameters_B777Lat’))

This section of the FALCON.m User Guide is still evolving and will include the de-
tailed description of all of the released functionalities of the parameter estimation tool-
box. In the meantime, you can reach out to us for any questions. We will do our best to
support you via email or even short Zoom calls.

7 Derivative Construction

Why is the derivative generation necessary?

• FALCON.m uses gradient based optimization algorithms to solve the problems,
therefore the gradient of the dynamic models, constraints and cost functions are
required. To achieve this, models, constraints and cost functions are preprocessed
to return derivatives together with the regular outputs. This preprocessing step
is a unique feature that differentiates FALCON.m from many other tools and is
also one of the main reasons why FALCON.m is very fast. FALCON.m handles all
derivative generation automatically!

• FALCON.m can calculate first and second order derivatives either analytically or
using finite differences. If the Symbolic Math Toolbox is not present, FALCON.m
switches to compatibility mode (finite differences) automatically. However, depen-
dent on the dynamic model or constraints, finite differences may be substantially
slower.

• The generated models / constraints need to be evaluated many times. Therefore,
for fast evaluation, FALCON.m generates C/C++ code which is compiled to a mex
file to ensure fastest possible evaluation. In case the MATLAB Coder is not present,
FALCON.m automatially switches to compatibility mode by evaluating the model
/ constraint within a for-loop. For complex dynamic models, the evaluation in a
compiled mex file is substantially faster.

• After preprocessing, FALCON.m creates an additional MATLAB or mex file (de-
pendent on the evaluation mode mex or matlab) in the current working directory.
These files implement functions which are passed to the passed to FALCON.m in
problem.addNewPhase, phase.addNewPathFunction, and so on.

Please note: In the quickstart example (see 3.3) not the preprocessed model
but the MATLAB file containing the source model was given to the new phase. If
this is the case, FALCON.m will automatically try to preprocess the given source
file. However, this method is recommended only if the optimal control problem is
very simple.

138 7 DERIVATIVE CONSTRUCTION

There are two main ways to preprocess the dynamic models / constraints and cost
functions.

Function Mode In this case the dynamic model / constraint or cost function is defined
by a single MATLAB source function. This is the preferred way and can be easily
achieved. (usage of the Function Mode is described in section 7.1)

Subsystem Mode This mode is important especially for large dynamic models using
analytic derivatives. If the model becomes very large, at some point, the Symbolic
Math Toolbox cannot calculate the analytic derivatives anymore. Models become
large if the differentiation takes longer than a minute (RULE OF THUMB!). The
following properties define a "large" model / constraint if it contains:

• multiple matrix vector multiplications

• multiple high order polynomials

• non-continuities such as lookup tables

In this case, the dynamic model can usually be split into smaller subsystems which
can be differentiated locally, giving the Subsystem Mode its name. (usage of the
Subsystem Mode is described in section 7.2)

All models / constraints and cost functions are created using the builder classes in
FALCON.m. These are

• falcon.SimulationModelBuilder for dynamic models

• falcon.PathConstraintBuilder for path constraints

• falcon.PointConstraintBuilder for point constraints and cost functions

In the following, the builder classes are explained in more detail. All builders support
the function mode and the subsystem mode.

7.1 Function Mode

The function mode is invoked by passing the function handle to the builder in the con-
structor. See the documentation of Simulation Model Builder, Path Constraint Builder
and Point Constraint Builder for more details.

7.2 System Mode

Large high fidelity models cannot be differentiated by the symbolic math toolbox di-
rectly. Therefore, FALCON.m offers the subsystem mode for model generation. The
basic idea is that the user splits the dynamic model / constraint / cost function into sim-
pler subsystems. The subsystems are implemented as MATLAB functions. FALCON.m
will automatically create the derivatives for the whole model / constraint or cost func-
tion. In the following the principles of the subsystem mode and the method provided
by the builder classes are described. Please note that for better understanding only the

7.2 System Mode 139

basic principles are presented. See the actual documentation of the classes for detailed
information.

For simplicity the explanation will be given with an application to a dynamic model
in mind. All principles and methods described can be transfered to constraints and cost
functions too.

7.2.1 Principles

Apart from the subsystems, the user needs to define how these are connected. In FAL-
CON.m every signal / variable is represented by a string. For every variable available in
the model, FALCON.m stores its size (scalar, row column vector or matrix).

1 states = [falcon.State(’x’), falcon.State(’y’)];
2 controls = [falcon.Control(’V’), falcon.Control(’alpha’)];
3

4 mdl = falcon.SimulationModelBuilder(’name’, states, controls);
5 mdl.addSubsystem(@myfunc,... % Subsystem Function Handle
6 {’x’, ’y’, ’V’, ’alpha’},... % Inputs to Subsystem
7 {’xdot’, ’ydot’}) % Outputs of Subsystem
8 mdl.setStateDerivativeNames({’xdot’, ’ydot’});
9 mdl.Build();

In the example above the states and controls are defined by an array of falcon.State
and falcon.Control objects which are passed to the constructor of the falcon.SimulationModelBuilder
instance. Within the builder all states and controls will be registered as individual avail-
able scalar variables. The user can now add an arbitrary number of subsystems to the
model. For every subsystem the source function (function handle or anonymous func-
tion, first argument), input arguments (cell array of strings, second argument) and the
output arguments (cell array of strings, third arguments) have to be specified. The
method setStateDerivativeNames tells the builder which variables hold the state
derivative information. Every construction is finalized by the Build command.

Parameters and Outputs are registered to the builder in the same way. Additionally,
constants can be defined.

7.2.2 Constants

There are basically three ways how constants can be used in the subsystem mode.

addConstantInput This method of the builder instance adds an additional input to the
model dynamics. The name as string as well as the size needs to be specified. Use
this method if a constant in the model shall be changeable after the generation of
the model derivatives.

addConstant This method adds an internal constant to the list of variable that cannot
be altered after the construction of the model. The name as a string as well as the
constant value needs to be provided. Use this method is a constant in the model
shall be created which is reused in different subsystems.

Numeric Variable Apart from strings, subsystem inputs be also be numeric variables
(scalar, vector or matrix). Use this feature if a constant input to a subsystem has

140 7 DERIVATIVE CONSTRUCTION

many zero entries. Thus, especially in the analytic derivative generation, the Sym-
bolic Math Toolbox can highly optimize the code. See the builders addSubsystem
method for more information.

7.2.3 Subsystems

Subsystems are added to a model using the addSubsystem method. A subsystem can
be a

• function handle to a MATLAB function

• anonymous function handle

NOT supported are: MATLAB builtin functions, nested functions, local functions (e.g.
below class definition). If you wish to use any of these function you can do so by
wrapping it with an anonymous function handle.

During the build process FALCON.m creates the derivatives of the source functions.
For every subsystem source function a fingerprint value (hash value) is generated. This
speeds up the derivative generation process if a small change was made and the model
is reconstructed. Subsystems that have not changed will not get their derivatives re-
calculated. The fingerprint is calculated only for the top-level function, meaning the
function behind the function handle or anonymous functions. Any other subfunctions
called by these are not taken into account. In order to force a new generation of the
derivatives, delete the fm_models and fm_constraints folder in current working
directory.

Derivative Subsystems can be used in case a function cannot be differentiated analyt-
ically (e.g. table data, minor discontinuities). Using the addDerivativeSubsystem
method it is possible to add any kind of subsystem to the model. However, in this case
the derivative need to be supplied by the user (e.g. using finite differences).

7.2.4 Variable Manipulation

It often occurs that a variable is available as a vector but individual values are required.
On the other hand, sometimes variables need to be stiched together (e.g. to form a
matrix or vector). For these cases, the subsystem derivative builder in FALCON.m offers
two methods:

SplitVariable Splits a matrix or vector into subparts

CombineVariables Combines multiple variables into a single new variable.

7.2.5 Important Remarks

• The use of global variables in subsystems has not been tested throughoutly. After
the built process it is very likely that global variable is no longer available within
the subsystem.

7.3 Simulation Model Builder 141

7.3 Simulation Model Builder

Parent Classes: falcon.core.builder.BaseBuilder

Properties

+ HasOutputs (Dependent)
Flag if the Simulation Model has Outputs

+ DERIVATIVE_ANALYTIC (Constant, read-only, Default = analytic)
Flag for setting builder to analytic derivative mode.

+ DERIVATIVE_FINITE_DIFFERENCE (Constant, read-only, Default = finite_difference)
Flat for setting builder to finite difference derivative mode.

+ EVALUATION_MEX (Constant, read-only, Default = mex)
Flag for settin builder to mex evaluation mode.

+ EVALUATION_MATLAB (Constant, read-only, Default = matlab)
Flag for setting builder to matlab evaluation mode.

+ EVALUATION_NONE (Constant, read-only, Default = none)
Flag for setting builder to no evaluation mode. (No wrapper is created)

+ TYPE_OUTPUT (Constant, read-only, Default = OUTPUT)
falcon.core.builder.BaseBuilder.TYPE_OUTPUT is a property.

+ TYPE_STATE (Constant, read-only, Default = STATE)
falcon.core.builder.BaseBuilder.TYPE_STATE is a property.

+ TYPE_CONTROL (Constant, read-only, Default = CONTROL)
falcon.core.builder.BaseBuilder.TYPE_CONTROL is a property.

+ TYPE_PARAMETER (Constant, read-only, Default = PARAMETER)
falcon.core.builder.BaseBuilder.TYPE_PARAMETER is a property.

+ TYPE_VALUE (Constant, read-only, Default = VALUE)
falcon.core.builder.BaseBuilder.TYPE_VALUE is a property.

+ TYPE_DISCRETE (Constant, read-only, Default = DISCRETE)
falcon.core.builder.BaseBuilder.TYPE_DISCRETE is a property.

+ TYPE_CONSTANT (Constant, read-only, Default = CONSTANT)
falcon.core.builder.BaseBuilder.TYPE_CONSTANT is a property.

+ ProjectName (read-only)
Name of the model or function project

+ SimpleFunctionHandle (read-only)
Holds the handle if a single function is used to define the function or Model /
Constraint or Cost

142 7 DERIVATIVE CONSTRUCTION

+ OptimizeCode (read-only)
Perform Code Optimization

+ isBuilt (read-only)
Flag that determined if the project was already build

+ Handle (Dependent)
Handle to the constructed model / constraint function.

Methods

SimulationModelBuilder (Constructor)
Class to construct dynamic models in falcon.

> addConstant
Add a internal constant to the project

> addConstantInput
Add a constant input to the dynamic model.

> addControl
Add a control input to the model.

> addDerivativeSubsystem
Add Subsystem which already provides derivatives to the project

> addOutput
Add an output to the model.

> addParameter
Add a parameter input to the model.

> addState
Add a dynamic state to the model.

> addSubsystem
Add Subsystem to the project to create its derivatives.

> addVariantSubsystem
Add a variant subsystem.

> Build
Builds the current project

> CheckDerivatives
Check Derivatives of the generated project

> CombineVariables
Combine multiple variables to a single variable

7.3 Simulation Model Builder 143

> getControlNames
Get the names of all control inputs.

> getOutputNames
Get the names of all model outputs.

> getParameterNames
Get the names of all model parameters.

> getStateDerivativeNames
Get the names of all model state derivatives.

> getStateNames
Get the names of all model states.

> hasControl
Check if the model has controls with the given names.

> hasOutput
Check if the model has outputs with the given names.

> hasParameter
Check if the model has parameters with the given names.

> hasState
Check if the model has states with the given names.

> plot
Visualize the model structure using falcon.core.builder.ModelStructureVisualizer

> setOutputs
Set the output of the model

> setStateDerivativeNames
Set the state derivative names used in subsystem mode.

> SimpleModeOutputVariableProcessing (Static)
falcon.core.builder.BaseBuilder.SimpleModeOutputVariableProcessing is a function.
arr = falcon.core.builder.BaseBuilder.SimpleModeOutputVariableProcessing(arr)

> SplitVariable
Split a single variable into multiple parts

Constructor

Keywords: Constructor Model Builder

144 7 DERIVATIVE CONSTRUCTION

- Syntax -

1 obj = falcon.SimulationModelBuilder(ProjectName, States)
2 obj = falcon.SimulationModelBuilder(ProjectName, States, Controls)
3 obj = falcon.SimulationModelBuilder(ProjectName, States, Controls,

Parameters)
4 obj = falcon.SimulationModelBuilder(ProjectName, States, Controls,

Parameters, Handle)
5 obj = falcon.SimulationModelBuilder(ProjectName, States, ’Name’, Value)
6 obj = falcon.SimulationModelBuilder(..., ’Name’, Value)

- Inputs -
ProjectName The name of the to be generated model. This is the filename of the

generated model.

States State input of the model. Column vector of falcon.State objects or integer for
number of states. States can also be added later using the addState() method.

Controls Control input of the model. Column vector of falcon.Control objects or
integer for number of controls. Use [] or 0 to set no controls. The default is [].
Controls can also be added later using the addControl() method.

Parameters Parameter input of the model. Column vector of falcon.Parameter objects
or integer for number of parameters. Use [] or 0 to set no parameters. The default
is []. Parameters can also be added later using the addParameter() method.

Handle Function Handle for models that are described using a single matlab function
(Function Mode). Leave empty if you want to construct a model using subsystems
(Subsystem Mode). (default: [])

- Name Value -
DerivativeMode Flag that defines if the derivatives are calculated using symbolic

differentiation (’analytic’) or using finite differences(’finite_difference’). (default
= ’analytic’)

Optimize Set the Optimization option for symbolic differentiation. (Function Mode
default=false, Subsystem Model default = true)

DoDependencyCheck Flag that enables a check if a subsystem is dependent on other
subsystems. (default = false)

DerivativeOrder Set the order of the highest derivatives to generate (default = 1)

- Outputs -
obj The falcon.SimulationModelBuilder instance.

The models used in falcon.SimulationModelBuilder can be of the form

ẋ = f(x, u, p, c1, c2, . . .) (58)
y = h(x, u, p, c1, c2, . . .) (59)

7.3 Simulation Model Builder 145

where f implements the state derivatives ẋ and h additional model outputs y. The
implementation of the model outputs is optional. c1, . . . are additional constant inputs
(see 7.3). Controls u, parameters p and constants c are optional and may not appear in
the model interface. In this case the model dynamics simplifies to f(x). However, the
order of the model inputs must hold, e.g. f(p, x) is not possible and has to be f(x, p).

Method setOutputs

Set the size of outputs of the model. This information is used for the construction of
the derivatives and wrapper file. In case of subsystem mode the actual names of the
outputs have to be provided using falcon.Output. Outputs can also be added anytime
using the addOutput() method.

Keywords: Model Builder Outputs

- Syntax -

1 obj.setOutputs(outputs)

- Inputs -
outputs numeric value specifying the number of outputs (simple mode only). Alter-

natively use falcon.Output column vector to set the size and names of outputs
(required for subsystem mode).

Method addConstantInput

Additional constant inputs to the model / constraint can be set using this function. They
will be added in order of occurence after the main input sequence f(x,u,p,c1,c2,...).
These constant inputs can be set and changed externally and are not hard-coded. This
makes testing different model types efficient. They must be added to the model in the
problem using the setConstant-method and thus, only the size is specified here.

Keywords: Base Builder Constant Input

- Syntax -

1 obj.addConstantInput(Name)
2 obj.addConstantInput(Name, VariableSize, ’MultipleTimeEval’,Value)
3 obj.addConstantInput(Name, VariableSize, ’MultipleTimeEval’,Value)
4 obj.addConstantInput(.., ’Name’,Value)

Name Name of input. (string)

VariableSize Either a numeric dimension [m,n] (must be 1 by 2 row vector) or a
cell array of string specifying multiple [1,1] entries to the model. This is the size
used for each non-dimensional time step.

146 7 DERIVATIVE CONSTRUCTION

Method setStateDerivativeNames (Subsystem Mode)

This function sets the names of the state derivatives for the subsystem mode. These
names are used to build the state derivatives correctly. It is recommended not to use
this method in combination with the more recent addState() function.

Keywords: Model Builder Deriv Names

- Syntax -

1 obj.setStateDerivativeNames(names)

names cell array of strings or single string (one state dynamic models only)

Method addConstant (Subsystem Mode)

Set constant values in Subsystem Mode. Values are internal and cannot be influence
from the outside. For additional inputs use the addConstantInput method. This method
throws an error if called in Function Mode.

Keywords: Base Builder Constant

- Syntax -

1 obj.addConstant(Name, Value)

- Inputs -
Name Name of the constant. (string)

Value Value of the constant. (numeric, scalar, vector or matrix).

Method addSubsystem (Subsystem Mode)

Add a subsystem to the model / constraint.
Keywords: Base Builder Subsystem

- Syntax -

1 obj.addSubsystem(Subsys, Inputs, Outputs)
2 obj.addSubsystem(Subsys, ’Inputs’, Inputs, ’Outputs’, Outputs)
3 obj.addSubsystem(Subsys, \{matrix, ’varstr’, \{’a’,’b’;’c’,’d’\})
4 obj.addSubsystem(.., ’Name’, Value)

- Inputs -
Subsys anonymous function, simple function handle or matlab.System class instance.

Inputs Input arguments cell array. Entries in the cell can either be numeric (scalar,
vector, matrix), a variable string, cell array of variable strings (variables in cell
array must be concatable).

Outputs Output arguments cell array. Entries in the cell can either be a variable string,
a cell array of variable strings. In the latter case the size of the cell array must fit
the output size. Additionally, a ’ ’ can be used to ignore an output.

7.3 Simulation Model Builder 147

- Name Value -
Optimize Flag that sets the optimization option for the derivative creation (analytic

derivative mode only). (default = true)

Method addDerivativeSubsystem (Subsystem Mode)

Adds a subsystem to the subsystem chain of the project which already calculates deriva-
tives. This enables the use of lookup tables or similar function in the subsystem chain.
A funtion handel to the subsystem, inputs and outputs have to be specified. In case
Name Value pairs are not set (OutputSizes) FALCON.m uses a nan call to the function
to determine the output sizes, jacobian (and hessian) sparsity structure. If the function
call cannot handle nan inputs, output sizes and sparsity patterns have to be provided.

Keywords: Base Builder Derivative Subsystem

- Syntax -
1 obj.addDerivativeSubsystem(Subsystem, Inputs, Outputs)
2 obj.addDerivativeSubsystem(Subsystem, ’Inputs’, Inputs, ’Outputs’,

Outputs)
3 obj.addDerivativeSubsystem(.., ’Name’, Value)

- Inputs -
Subsystem Must be a simple function handle (anonymous functions or matlab.System

classes are not supported)

Inputs Input arguments cell array. Entries in the cell can either be numeric, a variable
string, cell array of variable strings. Constant inputs (numeric, constant values)
must not have their derivatives returned by the derivative subsystem.

Outputs Output arguments cell array. Entries in the cell can either be a variable string.
Cell array of variable strings are not supported. Ignoring an output using ’ ’ is not
supported.

- Name Value -
The following name value pairs are optional, but in case on is set the all relevant infor-
mation has to be given.

OutputSizes The size of each output value.

OutputJacobianSparsity The sparsity pattern of the output jacobian given as a
matrix of zeros and ones.

OutputHessianSparsity The sparsity pattern of the output hessian given as a ma-
trix of zeros and ones.

Method addVariantSubsystem (Subsystem Mode)

A variant system switches between multiple functions according to the value of a variant
control input (a scalar, discrete, non-derivative variable).

Keywords: Base Builder VariantSubsystem

148 7 DERIVATIVE CONSTRUCTION

- Syntax -

1 obj.addVariantSubsystem(variantSystemDefinition)

- Inputs -
variantSystemDefinition A falcon.core.builder.VariantSystemDefinition instance.

Method SplitVariable (Subsystem Mode)

Split large variables into smaller heaps. Since the method uses mat2cell interally the
block structure and summation of rows and columns must fit. If the size of entries is the
same as the size of the variable name, rowsplit and colsplit do not have to be provided.
Otherwise the sum of rowsplit and sum of colsplit must fit the size of the variable name
respectively. Not available in SimpleMode.

Keywords: Base Builder Variables Split

- Syntax -

1 obj.SplitVariable(name, entries)
2 obj.SplitVariable(name, entries, rowsplit, colsplit)

- Inputs -
name name of original variable

entries name of new entries, which is orientation sensitive.

rowsplit row distribution

colsplit column distribution

Method CombineVariables (Subsystem Mode)

Combine multiple variables to a single variable to simplify the construction code. Not
available in SimpleMode.

Keywords: Base Builder Variables Combine

- Syntax -

1 obj.CombineVariables(name, vars)

- Inputs -
name Name of the new variable

vars Cell array of strings. vars is orientation sensitive, meaning {’a’, ’b’, ’c’} and {’a’; ’b’;
’c’} will create different variables. Variables must have a matching block structure
(see mat2cell).

7.3 Simulation Model Builder 149

Method addState (Subsystem Mode)

Add one or more model states and the corresponding state derivative names. This
allows you to conveniently define an integrator at any time during the model construc-
tion, instead of specifying all states in the SimulationModelBuilder constructor. Note:
When using addState(), the derivative names are specified directly in the same function
call, thus there is no need to call setStateDerivativeNames() anymore. If setStateDeriva-
tiveNames() is called anyway, the derivative names for all states need to be provided
again. Therefore, it is recommended to use either the traditional setup method (specify
states in the builder constructor, set the derivative names later), or the new, flexible
addState() interface, but not both at the same time.

Keywords: none

- Syntax -

1 builder = builder.addState(states, derivatives)

- Inputs -
states cell string or falcon.State array

derivatives cell string

Method addControl (Subsystem Mode)

Add one or more control inputs to the model.
Keywords: none

- Syntax -

1 builder = builder.addControl(controls)

- Inputs -
controls cell string or falcon.Control array

Method addParameter (Subsystem Mode)

Add one or more parameter inputs to the model.
Keywords: none

- Syntax -

1 builder = builder.addParameter(parameters)

- Inputs -
parameters cell string or falcon.Parameter array

Method addOutput (Subsystem Mode)

Add one or more outputs to the model.
Keywords: none

150 7 DERIVATIVE CONSTRUCTION

- Syntax -

1 builder = builder.addOutput(outputs)

- Inputs -
outputs cell string or falcon.Output array

Method hasState (Subsystem Mode)

Keywords: none

- Syntax -

1 flags = builder.hasState()

- Inputs -
states cell string or falcon.State array

- Outputs -
flags logical array

Method hasControl (Subsystem Mode)

Keywords: none

- Syntax -

1 flags = builder.hasControl()

- Inputs -
controls cell string or falcon.Control array

- Outputs -
flags logical array

Method hasParameter (Subsystem Mode)

Keywords: none

- Syntax -

1 flags = builder.hasParameter()

- Inputs -
parameters cell string or falcon.Parameter array

- Outputs -
flags logical array

7.3 Simulation Model Builder 151

Method hasOutput (Subsystem Mode)

Keywords: none

- Syntax -

1 flags = builder.hasOutputs()

- Inputs -
outputs cell string or falcon.Output array

- Outputs -
flags logical array

Method getStateNames (Subsystem Mode)

Keywords: none

- Syntax -

1 names = builder.getStateNames()

- Outputs -
names cell string

Method getStateDerivativeNames (Subsystem Mode)

Keywords: none

- Syntax -

1 names = builder.getStateDerivativeNames()

- Outputs -
names cell string

Method getControlNames (Subsystem Mode)

Keywords: none

- Syntax -

1 names = builder.getControlNames()

- Outputs -
names cell string

Method getParameterNames (Subsystem Mode)

Keywords: none

152 7 DERIVATIVE CONSTRUCTION

- Syntax -

1 names = builder.getParameterNames()

- Outputs -
names cell string

Method getOutputNames (Subsystem Mode)

Keywords: none

- Syntax -

1 names = builder.getOutputNames()

- Outputs -
names cell string

Method Build

Builds the current project, which means the derivative function interface is constructed.
Afterwards the evaluation function is created. Additional settings for the evaluation
function can be set.

Keywords: Base Builder Build

- Syntax -

1 handle = obj.Build()
2 handle = obj.Build(’Name’, Value)

- Name Value -
EvaluationProvider text (’mex’ generates a c++ mex file wrapper and mex func-

tion, ’matlab’ creates a Matlab function, ’none’ will prevent the construction of the
evaluation wrapper; default=’mex’) or a falcon.core.builder.DerivativeEvaluatorConfiguration
object.

MultiThreading Flag to compile the model with multi-threading (default: false)

OutputFolder Folder to which the compiled/generated model is going to be saved
(default: pwd).

- Outputs -
handle see get.Handle. In case ’none’ was chosen for the evaluation provider, handle

is empty []

7.4 Path Constraint Builder

Parent Classes: falcon.core.builder.BaseBuilder

7.4 Path Constraint Builder 153

Properties

+ DERIVATIVE_ANALYTIC (Constant, read-only, Default = analytic)
Flag for setting builder to analytic derivative mode.

+ DERIVATIVE_FINITE_DIFFERENCE (Constant, read-only, Default = finite_difference)
Flat for setting builder to finite difference derivative mode.

+ EVALUATION_MEX (Constant, read-only, Default = mex)
Flag for settin builder to mex evaluation mode.

+ EVALUATION_MATLAB (Constant, read-only, Default = matlab)
Flag for setting builder to matlab evaluation mode.

+ EVALUATION_NONE (Constant, read-only, Default = none)
Flag for setting builder to no evaluation mode. (No wrapper is created)

+ TYPE_OUTPUT (Constant, read-only, Default = OUTPUT)
falcon.core.builder.BaseBuilder.TYPE_OUTPUT is a property.

+ TYPE_STATE (Constant, read-only, Default = STATE)
falcon.core.builder.BaseBuilder.TYPE_STATE is a property.

+ TYPE_CONTROL (Constant, read-only, Default = CONTROL)
falcon.core.builder.BaseBuilder.TYPE_CONTROL is a property.

+ TYPE_PARAMETER (Constant, read-only, Default = PARAMETER)
falcon.core.builder.BaseBuilder.TYPE_PARAMETER is a property.

+ TYPE_VALUE (Constant, read-only, Default = VALUE)
falcon.core.builder.BaseBuilder.TYPE_VALUE is a property.

+ TYPE_DISCRETE (Constant, read-only, Default = DISCRETE)
falcon.core.builder.BaseBuilder.TYPE_DISCRETE is a property.

+ TYPE_CONSTANT (Constant, read-only, Default = CONSTANT)
falcon.core.builder.BaseBuilder.TYPE_CONSTANT is a property.

+ ProjectName (read-only)
Name of the model or function project

+ SimpleFunctionHandle (read-only)
Holds the handle if a single function is used to define the function or Model /
Constraint or Cost

+ OptimizeCode (read-only)
Perform Code Optimization

+ isBuilt (read-only)
Flag that determined if the project was already build

+ Handle (Dependent)
Handle to the constructed model / constraint function.

154 7 DERIVATIVE CONSTRUCTION

Methods

PathConstraintBuilder (Constructor)
Constructs analytic falcon.PathConstraintBuilder object for path constraint gener-
ation.

> addConstant
Add a internal constant to the project

> addConstantInput
Add a constant input to the dynamic model.

> addDerivativeSubsystem
Add Subsystem which already provides derivatives to the project

> addSubsystem
Add Subsystem to the project to create its derivatives.

> addVariantSubsystem
Add a variant subsystem.

> Build
Builds the current project

> CheckDerivatives
Check Derivatives of the generated project

> CombineVariables
Combine multiple variables to a single variable

> plot
Visualize the model structure using falcon.core.builder.ModelStructureVisualizer

> setConstraintValueNames
Set the constraint value names for subsystem mode.

> SimpleModeOutputVariableProcessing (Static)
falcon.core.builder.BaseBuilder.SimpleModeOutputVariableProcessing is a function.
arr = falcon.core.builder.BaseBuilder.SimpleModeOutputVariableProcessing(arr)

> SplitVariable
Split a single variable into multiple parts

Constructor

Keywords: Constructor Path Constraint

7.4 Path Constraint Builder 155

- Syntax -

1 obj = falcon.PathConstraintBuilder(Name, ModelOutputs)
2 obj = falcon.PathConstraintBuilder(Name, ModelOutputs, States)
3 obj = falcon.PathConstraintBuilder(Name, ModelOutputs, States, Controls)
4 obj = falcon.PathConstraintBuilder(Name, ModelOutputs, States,

Controls, Parameters)
5 obj = falcon.PathConstraintBuilder(Name, ModelOutputs, States,

Controls,
Parameters, Handle)

6 obj = falcon.PathConstraintBuilder(Name, ModelOutputs, States, ’Name’,
Value)

7 obj = falcon.PathConstraintBuilder(..., ’Param’, Value)

- Inputs -
Name The name of the to be generated constraint.

ModelOutputs Output input for the constraint. Column vector of falcon.Constraints
or integer for number of outputs.

States State input for the constraint. Column vector of falcon.States or integer for
number of states. Use [] to set no states. (default: [])

Controls Control input for the constraint. Column vector of falcon.Controls or inte-
ger for number of controls. Use [] to set no controls. (default: [])

Parameters Parameter input for the constraint. Column vector of falcon.Parameters
or integer for number of parameters. Use [] to set no parameters. (default: [])

Handle Function Handle for constraint that are described using a single function. Use
[] if you want to construct a constraint using subsystems. (default: [])

The path constraints used in falcon.PathConstraintBuilder can be of the
form

g(y, x, u, p, c1, c2, . . .) (60)

Please note the following:

• All inputs of g are optional (outputs y, states x, controls u, parameters p and
constant inputs c1, . . .). However, at least one of them has to enter the dynamic
path constraint and the order has to be fulfilled. (e.g. g(p, y) is not possible).

• Normally, path constraint do not require all outputs, states, controls and parame-
ters. Therefore, only the falcon.Constraint, falcon.State, falcon.Control
and falcon.Parameter objects that are required in the path function need to
be specified. During optimization, FALCON.m automatically, extracts the correct
values from the optimal control problem. If just the number of e.g. outputs is
specified, the number must be the same as the number of outputs of the dynamic
model.

• Additional constant inputs can be specified using as described in 7.2.2.

156 7 DERIVATIVE CONSTRUCTION

Method addConstantInput

Additional constant inputs to the model / constraint can be set using this function. They
will be added in order of occurence after the main input sequence f(x,u,p,c1,c2,...).
These constant inputs can be set and changed externally and are not hard-coded. This
makes testing different model types efficient. They must be added to the model in the
problem using the setConstant-method and thus, only the size is specified here.

Keywords: Base Builder Constant Input

- Syntax -

1 obj.addConstantInput(Name)
2 obj.addConstantInput(Name, VariableSize, ’MultipleTimeEval’,Value)
3 obj.addConstantInput(Name, VariableSize, ’MultipleTimeEval’,Value)
4 obj.addConstantInput(.., ’Name’,Value)

Name Name of input. (string)

VariableSize Either a numeric dimension [m,n] (must be 1 by 2 row vector) or a
cell array of string specifying multiple [1,1] entries to the model. This is the size
used for each non-dimensional time step.

Method addConstant (Subsystem Mode)

Set constant values in Subsystem Mode. Values are internal and cannot be influence
from the outside. For additional inputs use the addConstantInput method. This method
throws an error if called in Function Mode.

Keywords: Base Builder Constant

- Syntax -

1 obj.addConstant(Name, Value)

- Inputs -
Name Name of the constant. (string)

Value Value of the constant. (numeric, scalar, vector or matrix).

Method addSubsystem (Subsystem Mode)

Add a subsystem to the model / constraint.
Keywords: Base Builder Subsystem

- Syntax -

1 obj.addSubsystem(Subsys, Inputs, Outputs)
2 obj.addSubsystem(Subsys, ’Inputs’, Inputs, ’Outputs’, Outputs)
3 obj.addSubsystem(Subsys, \{matrix, ’varstr’, \{’a’,’b’;’c’,’d’\})
4 obj.addSubsystem(.., ’Name’, Value)

7.4 Path Constraint Builder 157

- Inputs -
Subsys anonymous function, simple function handle or matlab.System class instance.

Inputs Input arguments cell array. Entries in the cell can either be numeric (scalar,
vector, matrix), a variable string, cell array of variable strings (variables in cell
array must be concatable).

Outputs Output arguments cell array. Entries in the cell can either be a variable string,
a cell array of variable strings. In the latter case the size of the cell array must fit
the output size. Additionally, a ’ ’ can be used to ignore an output.

- Name Value -
Optimize Flag that sets the optimization option for the derivative creation (analytic

derivative mode only). (default = true)

Method addDerivativeSubsystem (Subsystem Mode)

Adds a subsystem to the subsystem chain of the project which already calculates deriva-
tives. This enables the use of lookup tables or similar function in the subsystem chain.
A funtion handel to the subsystem, inputs and outputs have to be specified. In case
Name Value pairs are not set (OutputSizes) FALCON.m uses a nan call to the function
to determine the output sizes, jacobian (and hessian) sparsity structure. If the function
call cannot handle nan inputs, output sizes and sparsity patterns have to be provided.

Keywords: Base Builder Derivative Subsystem

- Syntax -

1 obj.addDerivativeSubsystem(Subsystem, Inputs, Outputs)
2 obj.addDerivativeSubsystem(Subsystem, ’Inputs’, Inputs, ’Outputs’,

Outputs)
3 obj.addDerivativeSubsystem(.., ’Name’, Value)

- Inputs -
Subsystem Must be a simple function handle (anonymous functions or matlab.System

classes are not supported)

Inputs Input arguments cell array. Entries in the cell can either be numeric, a variable
string, cell array of variable strings. Constant inputs (numeric, constant values)
must not have their derivatives returned by the derivative subsystem.

Outputs Output arguments cell array. Entries in the cell can either be a variable string.
Cell array of variable strings are not supported. Ignoring an output using ’ ’ is not
supported.

158 7 DERIVATIVE CONSTRUCTION

- Name Value -
The following name value pairs are optional, but in case on is set the all relevant infor-
mation has to be given.

OutputSizes The size of each output value.

OutputJacobianSparsity The sparsity pattern of the output jacobian given as a
matrix of zeros and ones.

OutputHessianSparsity The sparsity pattern of the output hessian given as a ma-
trix of zeros and ones.

Method addVariantSubsystem (Subsystem Mode)

A variant system switches between multiple functions according to the value of a variant
control input (a scalar, discrete, non-derivative variable).

Keywords: Base Builder VariantSubsystem

- Syntax -

1 obj.addVariantSubsystem(variantSystemDefinition)

- Inputs -
variantSystemDefinition A falcon.core.builder.VariantSystemDefinition instance.

Method setConstraintValueNames (Subsystem Mode)

In case of subsystem mode, the names of the constraint values need to be provided to
determine the output values of the constraint.

Keywords: Path Constraint Constraint Names

- Syntax -

1 obj.setConstraintValueNames(\{cell array of strings\})
2 obj.setConstraintValueNames(’name1’, ’name2’, ...)

- Inputs -
Names Cell array of strings or the names as individual inputs. A single name can be

passed as a string.

Method SplitVariable (Subsystem Mode)

Split large variables into smaller heaps. Since the method uses mat2cell interally the
block structure and summation of rows and columns must fit. If the size of entries is the
same as the size of the variable name, rowsplit and colsplit do not have to be provided.
Otherwise the sum of rowsplit and sum of colsplit must fit the size of the variable name
respectively. Not available in SimpleMode.

Keywords: Base Builder Variables Split

7.4 Path Constraint Builder 159

- Syntax -
1 obj.SplitVariable(name, entries)
2 obj.SplitVariable(name, entries, rowsplit, colsplit)

- Inputs -
name name of original variable

entries name of new entries, which is orientation sensitive.

rowsplit row distribution

colsplit column distribution

Method CombineVariables (Subsystem Mode)

Combine multiple variables to a single variable to simplify the construction code. Not
available in SimpleMode.

Keywords: Base Builder Variables Combine

- Syntax -
1 obj.CombineVariables(name, vars)

- Inputs -
name Name of the new variable

vars Cell array of strings. vars is orientation sensitive, meaning {’a’, ’b’, ’c’} and {’a’; ’b’;
’c’} will create different variables. Variables must have a matching block structure
(see mat2cell).

Method Build

Builds the current project, which means the derivative function interface is constructed.
Afterwards the evaluation function is created. Additional settings for the evaluation
function can be set.

Keywords: Base Builder Build

- Syntax -
1 handle = obj.Build()
2 handle = obj.Build(’Name’, Value)

- Name Value -
EvaluationProvider text (’mex’ generates a c++ mex file wrapper and mex func-

tion, ’matlab’ creates a Matlab function, ’none’ will prevent the construction of the
evaluation wrapper; default=’mex’) or a falcon.core.builder.DerivativeEvaluatorConfiguration
object.

MultiThreading Flag to compile the model with multi-threading (default: false)

OutputFolder Folder to which the compiled/generated model is going to be saved
(default: pwd).

160 7 DERIVATIVE CONSTRUCTION

- Outputs -
handle see get.Handle. In case ’none’ was chosen for the evaluation provider, handle

is empty []

7.5 Point Constraint Builder

Parent Classes: falcon.core.builder.BaseBuilder

Properties

+ DERIVATIVE_ANALYTIC (Constant, read-only, Default = analytic)
Flag for setting builder to analytic derivative mode.

+ DERIVATIVE_FINITE_DIFFERENCE (Constant, read-only, Default = finite_difference)
Flat for setting builder to finite difference derivative mode.

+ EVALUATION_MEX (Constant, read-only, Default = mex)
Flag for settin builder to mex evaluation mode.

+ EVALUATION_MATLAB (Constant, read-only, Default = matlab)
Flag for setting builder to matlab evaluation mode.

+ EVALUATION_NONE (Constant, read-only, Default = none)
Flag for setting builder to no evaluation mode. (No wrapper is created)

+ TYPE_OUTPUT (Constant, read-only, Default = OUTPUT)
falcon.core.builder.BaseBuilder.TYPE_OUTPUT is a property.

+ TYPE_STATE (Constant, read-only, Default = STATE)
falcon.core.builder.BaseBuilder.TYPE_STATE is a property.

+ TYPE_CONTROL (Constant, read-only, Default = CONTROL)
falcon.core.builder.BaseBuilder.TYPE_CONTROL is a property.

+ TYPE_PARAMETER (Constant, read-only, Default = PARAMETER)
falcon.core.builder.BaseBuilder.TYPE_PARAMETER is a property.

+ TYPE_VALUE (Constant, read-only, Default = VALUE)
falcon.core.builder.BaseBuilder.TYPE_VALUE is a property.

+ TYPE_DISCRETE (Constant, read-only, Default = DISCRETE)
falcon.core.builder.BaseBuilder.TYPE_DISCRETE is a property.

+ TYPE_CONSTANT (Constant, read-only, Default = CONSTANT)
falcon.core.builder.BaseBuilder.TYPE_CONSTANT is a property.

+ ProjectName (read-only)
Name of the model or function project

7.5 Point Constraint Builder 161

+ SimpleFunctionHandle (read-only)
Holds the handle if a single function is used to define the function or Model /
Constraint or Cost

+ OptimizeCode (read-only)
Perform Code Optimization

+ isBuilt (read-only)
Flag that determined if the project was already build

+ Handle (Dependent)
Handle to the constructed model / constraint function.

Methods

PointConstraintBuilder (Constructor)
Class to construct point constraints with derivatives in FALCON.m.

> addConstant
Add a internal constant to the project

> addConstantInput
Add a constant input to the dynamic model.

> addDerivativeSubsystem
Add Subsystem which already provides derivatives to the project

> addPhaseInput
Add a new phase input to the point constraint

> addSubsystem
Add Subsystem to the project to create its derivatives.

> addVariantSubsystem
Add a variant subsystem.

> Build
Builds the current project

> CheckDerivatives
Check Derivatives of the generated project

> CombineVariables
Combine multiple variables to a single variable

> plot
Visualize the model structure using falcon.core.builder.ModelStructureVisualizer

> setConstraintValueNames
Set the constraint value names for subsystem mode.

162 7 DERIVATIVE CONSTRUCTION

> setParameters
Sets the parameter objects entering the point constraint.

> SimpleModeOutputVariableProcessing (Static)
falcon.core.builder.BaseBuilder.SimpleModeOutputVariableProcessing is a function.
arr = falcon.core.builder.BaseBuilder.SimpleModeOutputVariableProcessing(arr)

> SplitVariable
Split a single variable into multiple parts

Constructor

This class prepares the a point constraint for the use in FALCON.m. It calculates the
derivatives fully automatically. Two versions are supplied, the Function Mode and the
Subsystem Mode.

Keywords: Constructor Point Constraint

- Syntax -

1 obj = falcon.PointConstraintBuilder(ProjectName)
2 obj = falcon.PointConstraintBuilder(ProjectName, Handle)
3 obj = falcon.PointConstraintBuilder(ProjectName, Handle, ’Name’, Value)

- Inputs -
ProjectName The name of the generated constraint. This is the filename of the cre-

ated constraint.

Handle Function Handle for constraints that are described using a single matlab func-
tion (Function Mode). Leave empty if you want to construct a model using sub-
systems (Subsystem Mode). (default: [])

- Name Value -
DerivativeMode Flag that defines if the derivatives are calculated using symbolic

differentiation (’analytic’) or using finite differences(’finite_difference’). (default
= ’analytic’)

Optimize Set the Optimization option for symbolic differentiation. (Function Mode
default=false, Subsystem Model default = true)

DoDependencyCheck Flag that enables a check if a subsystem is dependent on other
subsystems. (default = false)

DerivativeOrder Set the order of the highest derivatives to generate (default = 1)

- Outputs -
obj The falcon.PointConstraintBuilder instance.

7.5 Point Constraint Builder 163

Method addPhaseInput

This method adds a new set of inputs to the point constraints that belong to a phase. All
inputs are optional but at least one of the outputs / states / controls need to be set. For
each phase input block it can be specified how many input time steps will be expected
(default = 1).

Keywords: Point Constraint Phase Input

- Syntax -

1 obj.addPhaseInput(Outputs, States, Controls, NumberOfTimeSteps)
2 obj.addPhaseInput(NumOutputs, NumStates, NumControls, NumberOfTimeSteps)
3 obj.addPhaseInput(States)

Number of objects If the number of the objects and not the actual objects are spec-
ified, then two conditions apply. The number of objects must be the same as the
number of objects in the phase. Additionally, the order of the outputs, states, con-
trols, timesteps arguments must be kept. This is true if at leas one output, state or
control is specified using the number.

Order of objects In Function mode the order of the phase inputs specified is used
to call the function handle. Thus it is possible to define a phase inputs in e.g.
the following way: obj.addPhaseInput(states(1), outputs(2),states(2:4), 3) where
there will be three inputs and the states are distributed into two seperate inputs.

Basic Idea In cases where the last syntax is used the point constraint is always added
with exactly a single time step. It is important to note that at this stage it is not
necessary (nor is it possible) to define the exact phase and normalized time that
the phase input comes from. This is only possible (and mandatory) when adding
the constraint to the problem. Thus, the constraint can be used modular within
the problem.

- Inputs -
Outputs Array of falcon.Output objects or number of output expected to enter the

point constraint. Specifying the input using a number is only available in Function
Mode. Additionally, the number of outputs must match the number of model
outputs in the phase. (default = no outputs)

States Array of falcon.State objects or number of states expected to enter the point
constraint. Specifying the input using a number if only available in Function
Model. Additionally, the number of states must match the number of states in
the phase. (default = no states)

Controls Array of falcon.Control objects or number of controls expected to enter the
point constraint. Specifying the input using a number is only available in Function
Mode. Additionally, the number of controls must match the number of model
outputs in the phase. (default = no controls)

164 7 DERIVATIVE CONSTRUCTION

NumberOfTimeSteps The number of time steps the phase input has. Here only the
time steps and thus the size is specified. Which times are given to the point con-
straint is specified in falcon.Problem.addNewPointConstraint.

Method setParameters

Set the parameter required by the constraint to calculate its values. Only call this
method if the constraint requires parameters.

Keywords: Point Constraint Parameter Names

- Syntax -

1 obj.setParameters(Parameters)

- Inputs -
Parameters Array of falcon.Parameter objects or number of parameters (Function

Mode only).

Method addConstantInput

Additional constant inputs to the model / constraint can be set using this function. They
will be added in order of occurence after the main input sequence f(x,u,p,c1,c2,...).
These constant inputs can be set and changed externally and are not hard-coded. This
makes testing different model types efficient. They must be added to the model in the
problem using the setConstant-method and thus, only the size is specified here.

Keywords: Base Builder Constant Input

- Syntax -

1 obj.addConstantInput(Name)
2 obj.addConstantInput(Name, VariableSize, ’MultipleTimeEval’,Value)
3 obj.addConstantInput(Name, VariableSize, ’MultipleTimeEval’,Value)
4 obj.addConstantInput(.., ’Name’,Value)

Name Name of input. (string)

VariableSize Either a numeric dimension [m,n] (must be 1 by 2 row vector) or a
cell array of string specifying multiple [1,1] entries to the model. This is the size
used for each non-dimensional time step.

Method addConstant (Subsystem Mode)

Set constant values in Subsystem Mode. Values are internal and cannot be influence
from the outside. For additional inputs use the addConstantInput method. This method
throws an error if called in Function Mode.

Keywords: Base Builder Constant

7.5 Point Constraint Builder 165

- Syntax -

1 obj.addConstant(Name, Value)

- Inputs -
Name Name of the constant. (string)

Value Value of the constant. (numeric, scalar, vector or matrix).

Method addSubsystem (Subsystem Mode)

Add a subsystem to the model / constraint.
Keywords: Base Builder Subsystem

- Syntax -

1 obj.addSubsystem(Subsys, Inputs, Outputs)
2 obj.addSubsystem(Subsys, ’Inputs’, Inputs, ’Outputs’, Outputs)
3 obj.addSubsystem(Subsys, \{matrix, ’varstr’, \{’a’,’b’;’c’,’d’\})
4 obj.addSubsystem(.., ’Name’, Value)

- Inputs -
Subsys anonymous function, simple function handle or matlab.System class instance.

Inputs Input arguments cell array. Entries in the cell can either be numeric (scalar,
vector, matrix), a variable string, cell array of variable strings (variables in cell
array must be concatable).

Outputs Output arguments cell array. Entries in the cell can either be a variable string,
a cell array of variable strings. In the latter case the size of the cell array must fit
the output size. Additionally, a ’ ’ can be used to ignore an output.

- Name Value -
Optimize Flag that sets the optimization option for the derivative creation (analytic

derivative mode only). (default = true)

Method addDerivativeSubsystem (Subsystem Mode)

Adds a subsystem to the subsystem chain of the project which already calculates deriva-
tives. This enables the use of lookup tables or similar function in the subsystem chain.
A funtion handel to the subsystem, inputs and outputs have to be specified. In case
Name Value pairs are not set (OutputSizes) FALCON.m uses a nan call to the function
to determine the output sizes, jacobian (and hessian) sparsity structure. If the function
call cannot handle nan inputs, output sizes and sparsity patterns have to be provided.

Keywords: Base Builder Derivative Subsystem

166 7 DERIVATIVE CONSTRUCTION

- Syntax -

1 obj.addDerivativeSubsystem(Subsystem, Inputs, Outputs)
2 obj.addDerivativeSubsystem(Subsystem, ’Inputs’, Inputs, ’Outputs’,

Outputs)
3 obj.addDerivativeSubsystem(.., ’Name’, Value)

- Inputs -
Subsystem Must be a simple function handle (anonymous functions or matlab.System

classes are not supported)

Inputs Input arguments cell array. Entries in the cell can either be numeric, a variable
string, cell array of variable strings. Constant inputs (numeric, constant values)
must not have their derivatives returned by the derivative subsystem.

Outputs Output arguments cell array. Entries in the cell can either be a variable string.
Cell array of variable strings are not supported. Ignoring an output using ’ ’ is not
supported.

- Name Value -
The following name value pairs are optional, but in case on is set the all relevant infor-
mation has to be given.

OutputSizes The size of each output value.

OutputJacobianSparsity The sparsity pattern of the output jacobian given as a
matrix of zeros and ones.

OutputHessianSparsity The sparsity pattern of the output hessian given as a ma-
trix of zeros and ones.

Method addVariantSubsystem (Subsystem Mode)

A variant system switches between multiple functions according to the value of a variant
control input (a scalar, discrete, non-derivative variable).

Keywords: Base Builder VariantSubsystem

- Syntax -

1 obj.addVariantSubsystem(variantSystemDefinition)

- Inputs -
variantSystemDefinition A falcon.core.builder.VariantSystemDefinition instance.

Method setConstraintValueNames (Subsystem Mode)

In case of subsystem mode, the names of the constraint values need to be provided to
determine the output values of the constraint.

Keywords: Point Constraint Constraint Names

7.5 Point Constraint Builder 167

- Syntax -

1 obj.setConstraintValueNames(\{cell array of strings\})
2 obj.setConstraintValueNames(’name1’, ’name2’, ...)

- Inputs -
Names Cell array of strings or the names as individual inputs. A single name can be

passed as a string.

Method SplitVariable (Subsystem Mode)

Split large variables into smaller heaps. Since the method uses mat2cell interally the
block structure and summation of rows and columns must fit. If the size of entries is the
same as the size of the variable name, rowsplit and colsplit do not have to be provided.
Otherwise the sum of rowsplit and sum of colsplit must fit the size of the variable name
respectively. Not available in SimpleMode.

Keywords: Base Builder Variables Split

- Syntax -

1 obj.SplitVariable(name, entries)
2 obj.SplitVariable(name, entries, rowsplit, colsplit)

- Inputs -
name name of original variable

entries name of new entries, which is orientation sensitive.

rowsplit row distribution

colsplit column distribution

Method CombineVariables (Subsystem Mode)

Combine multiple variables to a single variable to simplify the construction code. Not
available in SimpleMode.

Keywords: Base Builder Variables Combine

- Syntax -

1 obj.CombineVariables(name, vars)

- Inputs -
name Name of the new variable

vars Cell array of strings. vars is orientation sensitive, meaning {’a’, ’b’, ’c’} and {’a’; ’b’;
’c’} will create different variables. Variables must have a matching block structure
(see mat2cell).

168 7 DERIVATIVE CONSTRUCTION

Method Build

Builds the current project, which means the derivative function interface is constructed.
Afterwards the evaluation function is created. Additional settings for the evaluation
function can be set.

Keywords: Base Builder Build

- Syntax -

1 handle = obj.Build()
2 handle = obj.Build(’Name’, Value)

- Name Value -
EvaluationProvider text (’mex’ generates a c++ mex file wrapper and mex func-

tion, ’matlab’ creates a Matlab function, ’none’ will prevent the construction of the
evaluation wrapper; default=’mex’) or a falcon.core.builder.DerivativeEvaluatorConfiguration
object.

MultiThreading Flag to compile the model with multi-threading (default: false)

OutputFolder Folder to which the compiled/generated model is going to be saved
(default: pwd).

- Outputs -
handle see get.Handle. In case ’none’ was chosen for the evaluation provider, handle

is empty []

7.6 Advanced Model Building

This section introduces the advanced model building capabilities introduced in FAL-
CON.m version 1.27. In our research applications, these have been particularly useful
for the development of large models, or models that can be built in multiple variants.

7.6.1 Dependency Resolution

Subsystems as well as model inputs and outputs can be added in any order. FALCON.m
internally generates a dependency graph including all model variables and subsystem
function calls. If all dependencies can be resolved, FALCON.m generates the model code
such that all subsystems are called in topological order.

This improvement has been found particularly useful when models are generated in
multiple variants from object-oriented Matlab code. In such situations, it can be highly
inconvenient to control the order of subsystem installations, and to provide a complete
list of model inputs and outputs at once.

Dependency resolution is always enabled. Unused subsystems are automatically
omitted from the generated models, whereas unused inputs are preserved. Dependen-
cies are currently resolved on subsystem level, meaning that all outputs of a subsystem
are evaluated in the model if at least one of its output arguments is required.

7.6 Advanced Model Building 169

7.6.2 Adding Individual States, Controls, Parameters and Outputs

The traditional interface of FALCON.m builder classes requires you to specify all states,
controls and parameters directly when creating the builder object. Additionally, a full
list of outputs must be provided in a single function call.

However, in advanced model generation code, a more flexible interface is benefi-
cial. Therefore, the falcon.SimulationModelBuilder class, see 7.3, has been
extended with the methods addState(), addControl(), addParameter() and
addOutput(), among others. These allow you to add individual variables at any time.
Please note that the order of elements in the model input/output vectors corresponds
to the order of variable definitions within each group.

It is recommended to choose either the traditional approach or the new interface
when building a model. Both methods are not designed to be used at the same time.

7.6.3 Derivative-free Model Builds

While FALCON.m requires at least first-order derivatives of all model functions, derivative-
free models can still be of use for post-processing and other purposes. Such models can
be significantly faster and require far less memory, if they are evaluated on a very large
input grid.

To build a model without derivative code, create the builder object with the argu-
ments ’DerivativeOrder’, 0.

7.6.4 Flexible Builder Configuration

Traditionally, the evaluation mode is specified by passing either ’mex’ or ’matlab’
as EvaluationProvider option to the Build method of the model builder object.
However, the Build method also accepts a configuration object instead, which allows
to pass additional parameters. Currently, the supported configuration classes provided
in the falcon.core.builder package are

• DerivativeCoderConfiguration in place of ’mex’

• DerivativeMatlabConfiguration in place of ’matlab’

7.6.5 Centralized Derivative Cache

FALCON.m uses a cache system to avoid regenerating subsystem derivatives that are
already available. In case of complicated subsystems, this can considerably speed up
the build procedure.

When building multiple models with common subsystems, it is possible to use the
same derivative cache for all models. The derivatives of shared subsystems are then
generated only once. Note that currently, a cache must only be accessed by a single
process/thread at a time, since no locking is implemented. Parallel model builds are not
supported.

170 7 DERIVATIVE CONSTRUCTION

To use a central derivative cache, first create a falcon.core.builder.Cache
object. Pass the absolute path of the cache directory to the constructor. It is recom-
mended that you create a directory specifically for this purpose, as it will be cluttered
with many small files after a while.

Create a model builder object (builder) as usual and install the cache:
builder.DerivativeProvider.setDerivativeCache(cache).

7.6.6 Data Type Specification

Traditionally, all model inputs and outputs in FALCON.m are double precision arrays.
This requirement has been relaxed to allow constant (non-derivative) inputs with other
numeric data types. All variables used by FALCON.m itself remain double precision.
Data types can be specified by passing optional arguments ’DataType’, typeName
to the addConstantInput() input of FALCON.m model builder objects.

This feature can be used to provide constant inputs with arbitrary numeric types
to subsystems. Its main purpose, however, is to create discrete switches for use with
variant subsystems, see 7.6.7.

7.6.7 Variant Subsystems

Simulink users may appreciate the concept of variant subsystems, i.e., subsystems that
implement different functionality depending on the discrete value of a control variable.
All implemented variants share a common interface.

Note that variants can be switched only according to non-derivative variables in
FALCON.m, i.e., constant inputs. They should be seen as a convenient way to build a
single model that can be used in multiple situations, and definitely not as a method to
implement discrete controls.

Note also that variant subsystems incur a (usually small) performance penalty com-
pared to independently built model variants. This is not so much due to the evaluation
of switch statements, but more because of a suboptimal sparsity structure. All variants
are combined in a single interface function, whose sparsity is the union of the variant
sparsity patterns. This means that, generally, more potential nonzero elements than
necessary will be accounted for, throughout the optimal control problem.

To create a variant subsystem, you need one or more VariantDefinition ob-
jects and a VariantSystemDefinition object. Each VariantDefinition stores
a unique discrete control value that is later used to determine the active variant, and a
FunctionCallSignature object that references the variant function and defines its
inputs and outputs. The inputs can be FALCON.m variable names or numeric constants,
the outputs are variable names.

Variant functions must support symbolic evaluation; there is currently no support
for custom derivative subsystems within variant systems. All variants can have different
inputs and outputs in arbitrary order. As an example, consider the following definition
of two variants:

1 import falcon.core.builder.VariantDefinition;
2 import falcon.core.builder.FunctionCallSignature;
3 variants = [

7.6 Advanced Model Building 171

4 VariantDefinition(...
5 1, ... control value
6 FunctionCallSignature(...
7 @(x, a, b) sqrt(a + b .* x.^2), ...
8 ’Inputs’, {’x’, 1, 2}, ...
9 ’Outputs’, {’y’}))

10 VariantDefinition(...
11 5, ... control value
12 FunctionCallSignature(...
13 @(x, u) x .* u, ...
14 ’Inputs’, {’x’, ’u’}, ...
15 ’Outputs’, {’y’}))
16];

Once all variants are defined, the VariantSystemDefinition object can be cre-
ated, for example:

1 import falcon.core.builder.VariantSystemDefinition;
2 builder.addConstantInput(’variantControl’, ’DataType’, ’uint8’);
3 varsys = VariantSystemDefinition(...
4 ’varsysName’, ... identifier for error messages and code comments
5 ’variantControl’, ... control variable (discrete, non-derivative)
6 variants, ...
7 {’y’}) % variant system outputs

The specified variant system outputs must be a subset of the intersection of the
individual variant output arguments; in other words, these outputs need to exist for
all variants, but any variant may have additional outputs. Note that the inputs for the
variant system are not specified explicitly, they are automatically identified from the
variants.

The variant control (switch) must be discrete and representable by an integer. Enu-
merations derived from integer data types can be used when building the model; how-
ever, the constant input values specified for model evaluation must be manually con-
verted to the respective integer data type.

Variant subsystems are currently not supported with finite difference evaluation.

Class FunctionCallSignature Parent Classes:

Properties

+ FunctionHandle
The function handle

+ Inputs
Cell array of input arguments (variable names or numeric constants)

+ Outputs
Cell array of output argument names

172 7 DERIVATIVE CONSTRUCTION

Methods

FunctionCallSignature (Constructor)
Define a function call.

> checkValid
Do basic consistency checks, fail if invalid

> isValid
Do basic consistency checks

Constructor The FunctionCallSignature stores a function handle along with its
input and output arguments.

Keywords: none

- Syntax -

1 signature = FunctionCallSignature(functionHandle, inputs, outputs)

- Inputs -
functionHandle a function_handle object

inputs a cell of input arguments, which can be variable names (char) or numeric
constants; for example, inputs = {’x’, ’y’, pi}.

outputs a cell array of output argument names (char)

Class VariantDefinition Parent Classes:

Properties

+ ControlValue
Value of the control variable that activates the variant

+ Signature
The variant function call

+ HashMode (Default = sym)
Hash mode for derivative generation

+ OptimizeCode
Optimize derivative code

7.6 Advanced Model Building 173

Methods

VariantDefinition (Constructor)
Define a variant of a variant system.

> checkValid
Do basic consistency checks, fail if invalid

> isValid
Do basic consistency checks

Constructor The variant is defined by a control value for variant selection and a
function call signature.

Keywords: none

- Syntax -
1 variant = VariantDefinition(controlValue, signature)

Class VariantSystemDefinition Parent Classes:

Properties

+ Name
System name for log messages and code comments

+ ControlVariable
Name of the variant control variable

+ Outputs
System output argument names

+ Variants
VariantDefinition array

Methods

VariantSystemDefinition (Constructor)
Define a variant system.

> checkValid
Do basic consistency checks, fail if invalid

> getInputs
Get a list of input variables required for all variants.

> getOutputs
Get the system output argument names

> isValid
Do basic consistency checks

174 7 DERIVATIVE CONSTRUCTION

Constructor Keywords: none

- Syntax -

1 varSys = VariantSystemDefinition(name, controlVariable, variants,
outputs)

- Inputs -
name system name (char)

controlVariable name of the variable that selects a variant at runtime

variants falcon.core.builder.VariantDefinition array

outputs cell array of output names

7.6.8 Model Wrapper Classes

FALCON.m models are basically just functions that also calculate their own derivatives
and which can provide a generic description of their interface. All other model knowl-
edge, like constant inputs, variable bounds, scalings and offsets, needs to be supplied
externally when setting up a problem.

In some cases, however, it may be more convenient to consider a model not only as
a plain function with many parameters, but as an object that can organize its internals
by itself. For this purpose, the falcon.ModelWrapper base class has been created.
This class only implements a few convenience methods based on the generic FALCON.m
model function interface, such as the assignment of model constants by name instead of
index. However, model-specific subclasses can store additional configuration data and
override methods such as setupDefaultVariableAttributes() to make use of
this configuration.

For example, the dynamics of an aircraft may be implemented in a FALCON.m model
that is parameterized by a number of constant inputs, which may include aerodynamic
derivatives or propulsion model coefficients. Then, a wrapper class may be created that
is able to load aircraft-specific parameters from a set of configuration files. This class
can then automatically assign the model constants based on the loaded configuration,
and apply aircraft-specific limitations to the model variables. Once the model variables
have been created, some attributes may be adjusted by problem-specific values.

To associate a model with a specific wrapper class, pass the optional arguments
’ModelWrapperClass’, className to the FALCON.m model builder constructor.
The specified class name is stored in the model. After the model is built, you can create
use the wrapper as follows:

1 % create the wrapper object (specialized subclass instance, if
specified)

2 model = falcon.ModelWrapper(modelFunction).specialize();
3 % load model-specific configuration or set model constants by name
4 constants = struct(’a’, 1, ’b’, 2);
5 model.setConstants(constants);
6 % create model variables
7 [varsByType, varList] = model.createVariables();

7.6 Advanced Model Building 175

8 % evaluate the model (no need to specify constant inputs here!)
9 [statesdot, outputs] = model.evaluate(states, controls, parameters)

To create a model-specific wrapper class, start with the following template:
1 classdef MyModelWrapper < falcon.ModelWrapper
2

3 properties
4 MyModelParameters % model-specific configuration
5 end
6

7 methods
8

9 function self = MyModelWrapper(varargin)
10 self@falcon.ModelWrapper(varargin{:});
11 % initialize model-specific properties/constants/...
12 end
13

14 function [self] = loadParameters(self, file) % or something
similar

15 % set self.MyModelParameters
16 end
17

18 function [variables] = setupDefaultVariableAttributes(self,
variables)

19 % use model-specific knowledge to provide sane defaults
20 % or to setup problem-independent limitations; for example:
21 % variables.findFirst(’^n_z_B$’).setRange(...
22 % self.MyModelParameters.loadFactorRange)
23 % vars = variables.find(’_UNIT_m_d_s$’);
24 % for v = vars(:).’
25 % v.setScaling(1e-2);
26 % end
27 end
28

29 end
30

31 end

Class ModelWrapper Parent Classes: falcon.core.Handle, matlab.mixin.Heterogeneous,
matlab.mixin.Copyable

Properties

+ ModelFunction (read-only)
The low-level model function

+ ModelInfo (read-only)
The low-level model info struct

+ VariablesByType (read-only)
A struct with fields ’States’, ’Controls’, ’Parameters’ and ’Outputs’ that hold the
corresponding model variables after createVariables() is called

176 7 DERIVATIVE CONSTRUCTION

+ ModelConstantsCell (read-only)
The low-level cell array of model constants that are passed to the model with every
call to evaluate()

Methods

ModelWrapper (Constructor)
Create a generic model wrapper instance.

> createVariables
Create states, controls, parameters and outputs. <Descriptions> This method
analyzes the low-level model info struct provided by the model function handle,
and creates the corresponding state, control, parameter and output objects. Fur-
thermore, the setupDefaultVariableAttributes() method is applied to all variables.
Subclasses may override this method and use model-specific knowledge to apply
variable bounds/scalings/offsets, for example based on a parameter set stored in
the subclass wrapper object.

> evaluate
Evaluate the model.

> evaluateDirect
Evaluate the low-level model function.

> getConstants
Get a struct of model constants.

> getConstraints
falcon.ModelWrapper/getConstraints is a function. [constraints] = getConstraints(self)

> getControls
Get the model controls.

> getInfo
Get the low-level model info struct.

> getModelFunction
Get the low-level model function.

> getOutputElementNames
Extract output element names from the model info struct.

> getOutputs
Get the model outputs.

> getParameters
Get the model parameters.

> getStates
Get the model states.

7.6 Advanced Model Building 177

> listRequiredConstants
List the constant inputs required by the model function.

> setConstant
Set a model constant.

> setConstants
Set the model constants.

> setConstantsCell
Set the model constants by index.

> setConstantsStruct
Set the model constants by name.

> setModelFunction
Set the low-level model function.

> setupDefaultVariableAttributes
Initialize variable attributes (bounds, scaling, offset).

> specialize
Create a model-specific wrapper according to model attributes.

Constructor Given a model function handle that was generated by the FALCON
model builder framework, create a basic ModelWrapper object. This wrapper has no
specific model knowledge. It can, however, create and organize all model variables and
store a set of model constants. Model-specific features need to be implemented in sub-
classes. To associate a model with a specific wrapper class, pass the optional arguments
’ModelWrapperClass’, ’className’ to the model builder object. The class name is stored
in the model. Then you can create a generic model wrapper and call its specialize()
method to obtain an instance of the correct subclass. The recommended way of using
a model wrapper is to call falcon.ModelWrapper(modelFunction).specialize(). Please
note that the ModelWrapper class is a handle class.

Keywords: none

- Syntax -

1 model = falcon.ModelWrapper(modelFunction)
2 model = falcon.ModelWrapper(modelFunction).specialize()

- Inputs -
modelFunction a function handle generated by FALCON

- Outputs -
model a ModelWrapper object

178 7 DERIVATIVE CONSTRUCTION

Method specialize If a model function is linked to a specific wrapper class through
its info struct, the specialize() method returns an instance of the respective class. Oth-
erwise, a new generic wrapper object is created. In any case, variables and model
constants need to be recreated; thus, it is recommended to call specialize() only imme-
diately after constructing a wrapper. In other words, the recommended way of using a
model wrapper is to call falcon.ModelWrapper(modelFunction).specialize().

Keywords: none

- Syntax -

1 model = genericModel.specialize()

- Outputs -
instance the new wrapper object

Method listRequiredConstants This extracts the list of constant inputs from the
low-level model info struct.

Keywords: none

constants struct array with variable attributes

Method setConstants Set the model constants, either as cell array or as a struct
(recommended).

Keywords: none

- Inputs -
constants either a cell array with constant values ordered according to the model

info struct (see listRequiredConstants()), or a scalar struct with fields defining the
constant values by name (recommended)

- Name Value -
IgnoreUnknown logical flag indicating if unknown constants should be ignored (de-

fault=true); only applies to struct inputs

Method getConstants If model constants have been assigned in the wrapper ob-
ject, this method returns them as a struct for convenient name-based access.

Keywords: none

- Outputs -
constants struct (field names: constant input names, values: values from the model

constants array)

Method createVariables Keywords: none

7.6 Advanced Model Building 179

- Outputs -
varsByType A struct with fields States (falcon.State array), Controls (falcon.Control

array), Parameters (falcon.Parameter array), Outputs (falcon.Output array).

varList A heterogenous array of type falcon.core.OVC holding the model variables
in the order of states, controls, parameters and outputs. By this definition, it is
guaranteed that variables that appear as decision variables in the NLP generated
by FALCON are listed before those that can only appear as constraint values.

Method setupDefaultVariableAttributes In the generic falcon.ModelWrapper this
method has no effect. Model-specific subclasses may override it to intialize the bounds,
scalings and offsets of states/controls/parameters/outputs based on model-specific knowl-
edge. For example, a wrapper subclass can store a model-specific configuration data
structure and derive variable attributes from this. The setupDefaultVariableAttributes()
method is called automatically by createVariables().

Keywords: none

- Syntax -

1 variables = model.setupDefaultVariableAttributes(variables)

Method getStates Return the model states (only after createVariables() has been
called).

Keywords: none

- Outputs -
states falcon.State array

Method getControls Return the model controls (only after createVariables() has
been called).

Keywords: none

- Outputs -
controls falcon.Control array

Method getParameters Return the model parameters (only after createVariables()
has been called).

Keywords: none

- Outputs -
parameters falcon.Parameter array

Method getOutputs Return the model outputs (only after createVariables() has
been called).

Keywords: none

180 7 DERIVATIVE CONSTRUCTION

- Outputs -
outputs falcon.Output array

Method getOutputElementNames Keywords: none

- Syntax -

1 \% Example
2 [statesdotNames, outputNames] = model.getOutputElementNames()

Method getInfo This returns the low-level info struct provided by the FALCON
model function.

Keywords: none

- Outputs -
modelInfo low-level model info struct

Method evaluate Evaluate the model function with given state/control/parameter
inputs. Constant inputs are taken from the model constants stored in the wrapper
object.

Keywords: none

- Inputs -
states state values (if required by the model)

controls control values (if required by the model)

parameters parameter values (if required by the model)

Method evaluateDirect Evaluate the low-level model function directly. All inputs,
including the model constants, need to be specified.

Keywords: none

Index
Discretization

Evaluate
Gradient, 113, 114

Opti Func, 47
Path Function

Phase Constraint, 53
Phase Cost, 51

Problem
Simulate

Phase, 59
Solver

Discretization Method, 44
Solve, 47

Base Builder
Build, 152, 159, 168
Constant, 146, 156, 164

Input, 145, 156, 164
Derivative Subsystem, 147, 157, 165
Subsystem, 146, 156, 165
Variables

Combine, 148, 159, 167
Split, 148, 158, 167

VariantSubsystem, 147, 158, 166

Constraint
Array, 101

Constructor
Constraint, 100
Control, 84
Ipopt, 119
Model Builder, 143
Parameter, 93
Path Constraint, 154
Point Constraint, 162
Problem, 35
State, 76

Debugging
Constraint, 106
Control, 90
Grid, 71
Model, 74

OVC, 81
Parameter, 98
Path Function, 108, 111
Phase, 60
Problem, 47

Cost Values, 45
Time Series, 42

Problem Information, 41
Discretization

Evaluate
Constraint, 112, 114
Cost, 113, 115
Gradient, 113, 115
Residual, 112–114

Flags
Active, 103
Fixed, 87, 95
Sensitive, 89

gPC Problem
Fast Bake, 42

Grid
Interpolation

Method, 68
Values, 65

Resample, 66
Set

Specific Values, 69
Values, 70

Set and Hold
Specific Values, 67

Set Only
Specific Values, 69

Ipopt
Parser, 121
Settings

CPU Time, 122
IterationFunction, 122
Linear Solver, 122
Mu Barrier Tolerance, 121
Mu Initial, 123

181

182 INDEX

Mu Linear Decrease, 123
Mu Maximum, 123
Mu Maximum Factor, 124
Mu Minimum, 124
Mu Strategy, 124
Mu Superlinear Decrease, 124
Mu Target, 125

Solve, 126
Standard Start, 125
Warm Start, 126, 127

Model
Constants, 72
Outputs, 73
Overwrite Constants, 73
Parameters, 73

Model Builder
Deriv Names, 146
Outputs, 145

Optimizer
Checks

Analyze, 120
KKT, 120

Problem, 125
RecalcZFFlag, 122

OVC
Bound

Lower, 79, 88, 96, 104
Upper, 80, 89, 97, 105

byName, 39, 77, 85, 93, 102
Unique, 39, 77, 85, 93, 102

Offset, 80, 88, 96, 104
Scaling, 80, 88, 96, 105

Parameter
Value, 97

Path Constraint
Constraint Names, 158

Path Function
Constants, 107, 110
Overwrite Constants, 108, 110
Parameters, 108, 111

Phase
Boundaries

Final, 56

Initial, 58
Connect, 55
Cost

Linear, 52
Quadratic, 54

Duration
Final Time, 57
Limit, 56
Start Time, 59

Extension, 55
Grid

Control, 51
Lagrange Cost, 51
Path Constraint, 53
Post Process

Add, 55
Simulate, 59
StateGrid

Resample, 55
Point Constraint

Constraint Names, 166
Parameter Names, 164
Phase Input, 163

Problem
Bake, 39
Checks

Gradient, 39
Scaling, 40

Cost
Mayer, 36
Scaling, 43

Discretization Method, 44
Extension, 38
GUI, 43

Open, 43
Opti Func, 47
Phase, 36

Connect, 41
Connect All, 41

Point Constraint, 37
Post Process

Add, 38
Simulation, 45

Flag, 45
Solve, 47

Index 183

UnBake, 48

Solver
Limit

Iteration, 44
Tolerance

Feasibility, 44
Optimality, 45

184 REFERENCES

References

[1] John T. Betts. Practical Methods for Optimal Control and Estimation Using Nonlinear
Programming. Society for Industrial and Applied Mathematics, Philadelphia, 2009.

[2] Christof Büskens. Optimierungsmethoden und Sensitivitätsanalyse für optimale
Steuerprozesse mit Steuer- und Zustands-Beschränkungen. Dissertation, Westfälische
Wilhelms-Universität, Münster, 1998.

[3] Matthias Gerdts. Optimal control of ODEs and DAEs. De Gruyter textbook. De
Gruyter, Berlin and Boston, 2012.

[4] Barzin Hosseini, Agnes Steinert, Rodolfo Hofmann, Xiang Fang, Rasmus Steffensen,
Florian Holzapfel, and Christoph Göttlicher. Advancements in the theory and prac-
tice of flight vehicle system identification. Journal of Aircraft, 07 2023.

[5] Ravindra V. Jategaonkar. Flight Vehicle System Identification: A Time Domain
Methodology, chapter 4. American Institute of Aeronautics and Astronautics, Inc.,
Reston, VA, 2006.

[6] Eugene A. Morelli and Vladislav Klein. Aircraft System Identification - Theory And
Practice, 2nd Edition. Sunflyte Enterprises, Williamsburg, Virginia, 2016.

[7] Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical
Programming, 106(1):25–57, 2006.

	1 Welcome to FALCON.m
	1.1 Basic version
	1.2 Additional features and Add-ons

	2 Installation of FALCON.m
	2.1 How to: Usage of Ipopt
	2.2 How to: Usage of SNOPT
	2.3 How to: Usage of FMINCON

	3 Quick Start Guide
	3.1 Optimal Control Problem Formulation
	3.2 Important Basic Ideas of FALCON.m
	3.3 Introductory Example: Time Optimal Car Trajectory
	3.3.1 Implementation of Basic Problem in FALCON.m
	3.3.2 Adding a Post-Processing Step
	3.3.3 Implementation of Path Constraints
	3.3.4 Using the Path Constraint Builder
	3.3.5 Simple Multi-phase Problem
	3.3.6 Multi-phase Problem using Pointconstraint Builder

	3.4 Full Example: Optimal Aircraft Trajectories
	3.4.1 2-D Kinematic Aircraft Approach
	3.4.2 3-D Point Mass Aircraft Approach

	4 Theoretical Fundamentals
	4.1 Optimal Control Problem
	4.2 Collocation
	4.2.1 Time Transformation

	4.3 Numerical Optimization

	5 Problem Structure Used in FALCON.m
	5.1 Optimization Problem Structure
	5.2 Command Line Interface
	5.3 falcon.Problem
	5.4 falcon.core.Phase
	5.5 falcon.core.Grid
	5.6 falcon.core.Model
	5.7 falcon.State
	5.8 falcon.Control
	5.9 falcon.Parameter
	5.10 falcon.Constraint
	5.11 falcon.core.PointFunction
	5.12 falcon.core.PathFunction
	5.13 falcon.discretization.Trapezoidal
	5.14 falcon.discretization.BackwardEuler
	5.15 falcon.solver.ipopt
	5.16 Common Objectives and Constraints
	5.16.1 Linear Path Function
	5.16.2 Quadratic Path Function
	5.16.3 Linear Point Function
	5.16.4 Quadratic Point Function
	5.16.5 Rate Limit
	5.16.6 Continuity Constraint

	6 Parameter Estimation Using FALCON.m
	7 Derivative Construction
	7.1 Function Mode
	7.2 System Mode
	7.2.1 Principles
	7.2.2 Constants
	7.2.3 Subsystems
	7.2.4 Variable Manipulation
	7.2.5 Important Remarks

	7.3 Simulation Model Builder
	7.4 Path Constraint Builder
	7.5 Point Constraint Builder
	7.6 Advanced Model Building
	7.6.1 Dependency Resolution
	7.6.2 Adding Individual States, Controls, Parameters and Outputs
	7.6.3 Derivative-free Model Builds
	7.6.4 Flexible Builder Configuration
	7.6.5 Centralized Derivative Cache
	7.6.6 Data Type Specification
	7.6.7 Variant Subsystems
	7.6.8 Model Wrapper Classes

	Index
	Bibliography

